دورية أكاديمية

Study of vapor compression refrigeration system with suspended nanoparticles in the low GWP refrigerant.

التفاصيل البيبلوغرافية
العنوان: Study of vapor compression refrigeration system with suspended nanoparticles in the low GWP refrigerant.
المؤلفون: Prasad US; IIT(ISM), Dhanbad, India. dp16dp.16dp000005@mech.iitism.ac.in.; PIEMR, Indore, India. dp16dp.16dp000005@mech.iitism.ac.in., Mishra RS; Delhi Technological University, New Delhi, India., Das RK; IIT(ISM), Dhanbad, India.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Jan; Vol. 31 (1), pp. 1-26. Date of Electronic Publication: 2023 Nov 28.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Global Warming* , Refrigeration*, Temperature ; Hydrocarbons
مستخلص: The rising global temperatures, attributed to the high global warming potential (GWP) of conventional refrigerants, necessitate the adoption of low-GWP alternatives in HVAC systems. However, these low-GWP refrigerants often exhibit high toxicity and flammability, limiting their usage. To address these challenges, compact heat exchangers incorporating blended refrigerants have been introduced to enhance HVAC system performance. Researchers have also made significant strides in improving HVAC system efficiency by introducing the concept of suspending nanolubricants and nanorefrigerants within the system. This review paper seeks to comprehensively assess the potential of alternative refrigerants containing suspended nanoparticles, commonly referred to as nanorefrigerants. The paper reviews various mechanisms and potential combinations of different nanorefrigerants employed to enhance refrigeration system effectiveness and efficiency. A detailed examination of key heat transfer parameters and the performance predictions of low-GWP refrigerants, including those from the hydrofluoroolefin (HFO) and hydrocarbon (HC) classes, is conducted through energy and exergy analyses. Commercial refrigerants like R-134a, R-290, R-600, R-600a, R-123, R-125, R-22, R-141b, R-152, R-11, R-113, R-404a, R-407c, R-502, R-600a, R-507a, R-1234yf, R-1234ze, 1336mzz(Z), and R-410a are evaluated in conjunction with suspended nanoparticles, considering their specific properties. The findings indicate that the utilization of nanorefrigerants leads to notable improvements in overall system performance, characterized by reduced compressor workloads and increased heat transfer rates. Consequently, the integration of blended nanoparticles into refrigerants holds significant promise for advancing the HVAC field.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abdel-Hadi EA-H, Taher SH, Torki AHM, Hamad SS (2011) Heat transfer analysis of vapour compression system using nano CuO-R-134a. In: International Conference on Advanced Materials Engineering, IPCSIT 15.  https://api.semanticscholar.org/CorpusID:138078734.
Aminfar H, Haghgoo MR (2012) Brownian motion and thermophoresis effects on natural convection of alumina–water nanofluid. Proc Inst Mech Eng C J Mech Eng Sci 227(1):100–110. https://doi.org/10.1177/0954406212445683. (PMID: 10.1177/0954406212445683)
Aminfar H, Maroofiazar R (2011) A numerical study of the hydro- thermal behavior of nano fluids in rectangular micro channels using a mixture model. Proc Inst Mech Eng Part C: J Mech Eng Sci 225(4):791–798. https://doi.org/10.1243/09544062JMES2419. (PMID: 10.1243/09544062JMES2419)
Behabadi MA, Nasr M, Baqeri S (2014) Experimental investigation of flow boiling heat transfer of R-600a/oil/CuO in a plain horizontal tube. Exp Therm Fluid Sci 58:105–111. https://doi.org/10.1016/j.expthermflusci.2014.06.013. (PMID: 10.1016/j.expthermflusci.2014.06.013)
Behabadi MA, Sadoughi MK, Darzi M, Fakoor-Pakdaman M (2015) Experimental study on heat transfer characteristics of R600a/POE/CuO nano-refrigerant flow condensation. Exp Therm Fluid Sci 66:46–52. https://doi.org/10.1016/j.expthermflusci.2015.02.027. (PMID: 10.1016/j.expthermflusci.2015.02.027)
Bi S, Shi L, Zhang L (2007) Performance study on domestic refrigerator using R134a/mineral oil/nano TiO as working fluid. Int J Refrig 106:184–190 https://iifiir.org/en/fridoc/performance-study-of-a-domestic-refrigerator-using-r-134a-mineral-24631.
Bi S-s, Shi L, Zhang L-l (2008) Application of nanoparticles in domestic refrigerators. Appl Therm Eng 28(14–15):1834–1843. https://doi.org/10.1016/j.applthermaleng.2007.11.018. (PMID: 10.1016/j.applthermaleng.2007.11.018)
Bi S, Guo K, Liu Z (2011) Performance of domestic refrigerator using TiO2- R600a nanorefrigerant as working fluid. Energy Conserv Management 52(1):733–737. https://doi.org/10.1016/j.enconman.2010.07.052. (PMID: 10.1016/j.enconman.2010.07.052)
Bobbo S, Fedele L, Fabrizio M, Barison S, Battiston S, Pagura C (2010) Influence of nanoparticles dispersion in POE oils on lubricity and R134a solubility. Int J Refrig 33(6):1180–1186. https://doi.org/10.1016/j.ijrefrig.2010.04.009. (PMID: 10.1016/j.ijrefrig.2010.04.009)
Bolaji BO (2010) Experimental study of R152a and R32 to replace R134a in a domestic refrigerator. Int J Energy Eng 35:3793–3798. https://doi.org/10.1016/j.energy.2010.05.031. (PMID: 10.1016/j.energy.2010.05.031)
Bolaji BO, Akintunde MA, Falade TO (2011) Comparative analysis of performance of three ozone-friends HFC refrigerants in a vapour compression refrigeration. J Environ Sustain 2:61–64 http://repository.fuoye.edu.ng/handle/123456789/1231.
Choi SUS (1995) In: Singer DA, Wang HP (eds) Enhancing thermal conductivity of fluids with nanoparticles, in Developments and applications of non-Newtonian flows, vol FED-231/MD-66. ASME, New York, pp 99–105 https://www.osti.gov/servlets/purl/196525.
Dalkilic AS, Wongwises S (2010) A performance comparison of vapor-compression refrigeration system using various alternatives refrigerants. Int Commun Heat Mass Transf 37:1340–1349. https://doi.org/10.1016/j.icheatmasstransfer.2010.07.006. (PMID: 10.1016/j.icheatmasstransfer.2010.07.006)
Diao YH, Li CZ, Zhao YH, Liu Y, Wang S (2015) Experimental investigation on the pool boiling characteristics and critical heat flux of Cu-R141b nanorefrigerant under atmospheric pressure. Int J Heat Mass Transf 89:110–115. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.043. (PMID: 10.1016/j.ijheatmasstransfer.2015.05.043)
Ding G-l (2007) Recent developments in simulation techniques for vapour-compression refrigeration systems. Int J Refrig 30:1119–1133. https://doi.org/10.1016/j.ijrefrig.2007.02.001. (PMID: 10.1016/j.ijrefrig.2007.02.001)
Ding G, Peng H, Jiang W, Gao Y (2009) The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant–oil mixture. Int J Refrig 32(1):114–123. https://doi.org/10.1016/j.ijrefrig.2008.08.007. (PMID: 10.1016/j.ijrefrig.2008.08.007)
Dossat RJ, Horan TJ (2002) Principles of refrigeration. Prentice hall International Inc., New Jersey, p 454 https://www.worldcat.org/title/principles-of-refrigeration/oclc/464217230.
Eastman JA, Choi US, Thompson LJ, Lee S (1996) Enhanced thermal conductivity through the development of nano fluids. Mater Res Soc Symp Proc 457:3–11. https://doi.org/10.1557/PROC-457-3. (PMID: 10.1557/PROC-457-3)
Esfanjani P, Jahangiri S, Heidarian A (2022) A review on solar-powered cooling systems coupled with parabolic dish collector and linear Fresnel reflector. Environ Sci Pollut Res 29:42616–42646. https://doi.org/10.1007/s11356-022-19993-3. (PMID: 10.1007/s11356-022-19993-3)
Fatouh M, El Kafafy M (2006) Assessment of propane / commercial butane mixtures as possible alternatives to R134a in domestic refrigerators. Energ Conver Manage 47:2644–2658. https://doi.org/10.1016/j.enconman.2005.10.018. (PMID: 10.1016/j.enconman.2005.10.018)
Gigiel A (2004) Safety testing of domestic refrigerators using flammable refrigerants. Int J Refrig 27:621–628. https://doi.org/10.1016/j.ijrefrig.2004.03.001. (PMID: 10.1016/j.ijrefrig.2004.03.001)
Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundamentals 1(3):187–191. https://doi.org/10.1021/i160003a005. (PMID: 10.1021/i160003a005)
Havelsky V (2000) Investigation of refrigerating system with R12 refrigerant replacements. Appl Therm Eng 20:133–140. https://doi.org/10.1016/S1359-4311(99)00016-2. (PMID: 10.1016/S1359-4311(99)00016-2)
He M-G, Li T-C, Liu Z-G, Zhang Y (2005) Testing of the mixing refrigerants HFC152a/HFC125 in domestic refrigerator. Appl Therm Eng 25:1169–1181. https://doi.org/10.1016/j.applthermaleng.2004.06.003. (PMID: 10.1016/j.applthermaleng.2004.06.003)
Hong TK, Yang HS, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 97:064311. https://doi.org/10.1063/1.1861145. (PMID: 10.1063/1.1861145)
Hozod M (2005) Performance comparison of single-stage and cascade refrigeration systems using R134a as the working fluid. Turk J Eng Environ Sci 29:285–269.
Hu H, Peng H, Ding G (2013) Nucleate pool boiling heat transfer characteristics of refrigerant/nanolubricant mixture with surfactant. Int J Refrig 36(3):1045–1055. https://doi.org/10.1016/j.ijrefrig.2012.12.015. (PMID: 10.1016/j.ijrefrig.2012.12.015)
Jiang W, Ding G, Peng H (2009a) Measurement and model on thermal conductivities of carbon nano tube nano refrigerant. Int J Therm Sci 48(2009):1108–1115. https://doi.org/10.1016/j.ijthermalsci.2008.11.012. (PMID: 10.1016/j.ijthermalsci.2008.11.012)
Jiang W, Ding G, Peng H, Gao Y, Wang K (2009b) Experimental and model research on nanorefrigerant thermal conductivity. HVAC&R Research 15(3):651–669. https://doi.org/10.1080/10789669.2009.10390855. (PMID: 10.1080/10789669.2009.10390855)
Joseph Sekher S (2004) Improved energy efficiency for CFC domestic refrigerators retrofitted with ozone friendly HFC134a. Int J Therm Sci 43:307–314. https://doi.org/10.1016/j.ijthermalsci.2003.08.002. (PMID: 10.1016/j.ijthermalsci.2003.08.002)
Jwo C-S (2008) Experimental study on thermal conductivity of lubricant containing nanoparticles. Rev Adv Mater Science 18:660–666 https://www.ipme.ru/e-journals/RAMS/no&#95;71808/jwo.pdf.
Jwo C-S, Jeng L-Y, Teng T-P, Chang H (2009) Effects of nanolubricant on performance of hydrocarbon refrigerant system. J Vac Sci Technol B 27(3):1473–1477. https://doi.org/10.1116/1.3089373. (PMID: 10.1116/1.3089373)
Jwo C-S, Ting C-C, Wang W-R (2012) Efficiency analysis of home refrigerators by replacing hydrocarbon refrigerators. Int J Meas 42:697–701. https://doi.org/10.1016/j.measurement.2008.11.006. (PMID: 10.1016/j.measurement.2008.11.006)
Kang SW, Wei WC, Tsai SH, Yang SY (2006) Experimental investigation of silver nano fluid on heat pipe thermal performance. Appl Therm Eng 26:2377–2382. https://doi.org/10.1016/j.applthermaleng.2006.02.020. (PMID: 10.1016/j.applthermaleng.2006.02.020)
Kedzierski MA (2011) Effect of Al2O3 nanolubricant on R134a pool boiling heat transfer. Int J Refrig 34(2):498–508. https://doi.org/10.1016/j.ijrefrig.2010.10.007.
Kedzierski MA (2012) Effect of diamond nanolubricant on R134a pool boiling heat transfer. ASME J Heat Transfer 134:051001–051001. https://doi.org/10.1115/1.4005631. (PMID: 10.1115/1.4005631)
Kumma N, Kruthiventi SSH (2022) Effect of dilutant concentration on the performance of environment-friendly mixed refrigerants used in domestic refrigerators. Environ Sci Pollut Res 29:71988–72000. https://doi.org/10.1007/s11356-022-20965-w. (PMID: 10.1007/s11356-022-20965-w)
Lee D, Kim JW, Kim BG (2006) A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J Phys Chem B 110(9):4323–4328. https://doi.org/10.1021/jp057225m. (PMID: 10.1021/jp057225m)
Li S, Jun L (2022) A theoretical comparative study of vapor-compression refrigeration cycle using Al2O3 nanoparticle with low-GWP refrigerants. Entropy 24(12):1820. https://doi.org/10.3390/e24121820. (PMID: 10.3390/e24121820)
Li S, Liu Y, Liu Y (2021) Performance comparison of ejectors in ejector-based refrigeration cycles with R1234yf, R1234ze(E) and R134a. Environ Sci Pollut Res 28:57166–57182. https://doi.org/10.1007/s11356-021-14626-7. (PMID: 10.1007/s11356-021-14626-7)
Lin L, Peng H, Ding G (2016) Experimental research on particle aggregation behavior in nanorefrigerant-oil mixture. Appl Therm Eng 98:944–953. https://doi.org/10.1016/j.applthermaleng.2015.12.052. (PMID: 10.1016/j.applthermaleng.2015.12.052)
Liu Z, Imam Haider BY, Liu RR (1994) Test result of hydro carbon mixtures in domestic refrigerators freezers Centre Environmental Energy Engineering. University of Maryland College Park, Maryland.
Liu Z-H, Li Y-Y, Bao R (2011) Composite effect of nano particle parameter on thermal performance of cylindrical micro-grooved heat pipe using nano fluids. Int J Therm Sci 50:558–568. https://doi.org/10.1016/j.ijthermalsci.2010.11.013. (PMID: 10.1016/j.ijthermalsci.2010.11.013)
Liu M-S, Lin MC-C, Huang I-T, Wang C-C (2006) Enhancement of thermal conductivity with CuO for nanofluids. Chem Eng Technol 29(1):72–77. https://doi.org/10.1002/ceat.200500184. (PMID: 10.1002/ceat.200500184)
Liu ZH, Zhu QZ (2011) Application of aqueous nano fluids in a horizontal mesh heat pipe. Energ Conver Manage 52:292–300. https://doi.org/10.1016/j.enconman.2010.07.001. (PMID: 10.1016/j.enconman.2010.07.001)
Mahbubul IM, Fadhilah SA, Saidur R, Leong KY, Amalina MA (2013) Thermo physical properties and heat transfer, performance of Al2O3/R-134a nano refrigerants. Int J Heat Mass Transf 57:100–108. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.007. (PMID: 10.1016/j.ijheatmasstransfer.2012.10.007)
Mahabubul IM, Saidur R, Amalina MA (2011) Pressure drop characteristics of TiO2-R123 nano refrigerant in a circular tube. Eng e-trans 6(2):124–130.
Mahabubul IM, Saidur R, Amalina MA (2012) Investigation of viscosity of R123-TIO2 nano refrigerant. Int J Mech Mater Eng 7(2):146–151.
Mahlia TMI, Saidur R (2010) A review on test procedure, energy efficiency standards and energy labels for room air conditioners and refrigerator-freezers. Renew Sustain Energy Rev 14:1888–1900. https://doi.org/10.1016/j.rser.2010.03.037. (PMID: 10.1016/j.rser.2010.03.037)
Soudagar MEM, Kalam MA, Sajid MU, Afzal A, Banapurmath NR, Akram N, Mane SD, Ahamed Saleel C (2020) Thermal analyses of minichannels and use of mathematical and numerical models. Numer Heat TR A-Appl 77(5):497–537. https://doi.org/10.1080/10407782.2019.1701883.
Maxwell JC (1873) Treatise on electricity and magnetism. Clarendon Press, Oxford.
Misheck G, Mwaba XH, Junjie G (2006) Influence of wick characteristics on heat pipe performance. Int J Energy Res 30:489–499. https://doi.org/10.1002/er.1164. (PMID: 10.1002/er.1164)
Mishra RS (2014) Methods for improving thermodynamic performance of vapour compression refrigeration system using twelve eco friendly refrigerants in primary circuit and nanofluid (water-nano particles based) in secondary circuit. Int J Emerg Technol Adv Eng 4(6).
Mishra RS (2015) Irreversibility reduction in vapour compression refrigeration systems using Al O nano material mixed in R718 as Secondary fluid. Int J Adv Res Innovation 3(2):321–327.
Mishra RS (2020a) Energy-exergy performance evaluation of new HFO refrigerants in the modified vapour compression refrigeration systems using liquid vapour heat exchanger. International Journal of Advance Research and Innovation 4(2):77–85. https://doi.org/10.36037/ijrei.2021.5204.
Mishra RS (2020b) Methods for enhancing energetic-exergetic performances of vapour compression refrigeration system using HFO-1336mzz(Z) refrigerant through nano materials mixed with R-718 fluid in secondary circuit of evaporator. Int J Adv Res Innovation 4(3):143–148.
Mishra RS (2020c) New & low GWP eco-friendly refrigerants used for predicting thermodynamic (energy-exergy) performances of cascade vapour compression refrigeration system using for replacing R134a, R245fa and R32. Int J Adv Res Innovation 4(3):124–130. https://doi.org/10.36037/IJREI.2020.4301. (PMID: 10.36037/IJREI.2020.4301)
Mishra RS (2020d) Single and multiple cascading of VCRS in NH H O vapour absorption refrigeration systems for improving thermodynamic (energy-exergy) performances using five ecofriendly new HFOs and other low GWP refrigerants for replacing R134a. Int J Adv Res Innovation 4(2):96–104.
Mishra RS (2020e) Thermal performance of multi cascaded vapour compression NH H O absorption systems for ultra-low temperature applications. Int J Adv Res Innov 4(1):39–55. https://doi.org/10.36037/IJREI.2020.4104. (PMID: 10.36037/IJREI.2020.4104)
Mishra RS (2020f) Thermal performance of three stage cascade vapour compression refrigeration systems using new HFO in high and intermediate temperature cycle and R32 ethylene and hydrocarbons in ultra-low temperature cycle refrigerants. Int J Adv Res Innov 4(2):109–123. https://doi.org/10.36037/IJREI.2020.4206. (PMID: 10.36037/IJREI.2020.4206)
Mohanraj M, Jayaraj S, Muraleedharan C (2009a) Environment friendly alternatives to halogenated refrigerants – a review. Int J Greenhouse Gas Control 3:108–119. https://doi.org/10.1016/j.ijggc.2008.07.003. (PMID: 10.1016/j.ijggc.2008.07.003)
Mohanraj M, Jayaraj S, Muraleedharan C, Chandrasekar P (2009b) Experimental investigation of R290/R600a mixture as an alternative to R134a in a domestic refrigerator. Int J Therm Sci 48:1036–1042. https://doi.org/10.1016/j.ijthermalsci.2008.08.001. (PMID: 10.1016/j.ijthermalsci.2008.08.001)
Naphon P, Thongjing C (2014) Pool boiling heat transfer characteristics of refrigerant- nanoparticle mixtures. Int Commun Heat Mass Transf 52:84–89. https://doi.org/10.1016/j.icheatmasstransfer.2014.01.014. (PMID: 10.1016/j.icheatmasstransfer.2014.01.014)
Naphon P, Thongkum D, Assadamongkol P (2009) Heat pipe efficiency enhancement with refrigerant-nano particles mixtures. J Energ Convers Manage 50:772–776. https://doi.org/10.1016/j.enconman.2008.09.045. (PMID: 10.1016/j.enconman.2008.09.045)
Nawaz S, Babar H, Ali HM, Sajid MU, Janjua MM, Said Z, Tiwari AK, Syam Sundar L, Li C (2022) Oriented square shaped pin-fin heat sink: Performance evaluation employing mixture based on ethylene glycol/water graphene oxide nanofluid. Appl Therm Eng 206:118085. https://doi.org/10.1016/j.applthermaleng.2022.118085. (PMID: 10.1016/j.applthermaleng.2022.118085)
Neogy RK, Raychaudhuri AK (2013) Effect of stabilizer on dynamic thermal property of ZnO nanofluid. Nanoscale Res Lett 8:12. https://doi.org/10.1186/1556-276X-8-125. (PMID: 10.1186/1556-276X-8-125)
Noman S, Tirumalachetty H, Athikesavan MM (2022) A comprehensive review on experimental, numerical and optimization analysis of EAHE and GSHP systems. Environ Sci Pollut Res 29:67559–67603. https://doi.org/10.1007/s11356-022-22228-0. (PMID: 10.1007/s11356-022-22228-0)
Padilla M, Revellin R, Bonjour J (2010) Exergy analysis of R413A as replacement of R12 in a domestic refrigeration system. Energ Conver Manage 51:2195–2201. https://doi.org/10.1016/j.enconman.2010.03.013. (PMID: 10.1016/j.enconman.2010.03.013)
Padmavathy R, Chockalingam MP, Kamaraj N (2021) Performance studies of low GWP refrigerants as environmental alternatives for R134a in low-temperature applications. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-15875-2.
Park KJ, Jung D (2007a) Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning. Energ Buildings 39(9):1061–1064. https://doi.org/10.1016/j.enbuild.2006.12.001. (PMID: 10.1016/j.enbuild.2006.12.001)
Park KJ, Jung D (2007b) Enhancement of nucleate boiling heat transfer using carbon nanotubes. Int J Heat Mass Transf 50:4499–4502. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.012. (PMID: 10.1016/j.ijheatmasstransfer.2007.03.012)
Peng H, Ding G, Jiang W, Hu H, Gao Y (2009) Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. Int J Refrig 32(6):1259–1270. https://doi.org/10.1016/j.ijrefrig.2009.01.025. (PMID: 10.1016/j.ijrefrig.2009.01.025)
Peng H, Ding G, Hu H, Jiang W (2010a) Influence of carbon nanotubes on nucleate pool boiling heat transfer characteristics of refrigerant–oil mixture. Int J Therm Sci 49(12):2428–2438. https://doi.org/10.1016/j.ijthermalsci.2010.06.025. (PMID: 10.1016/j.ijthermalsci.2010.06.025)
Peng H, Ding G, Hu H, Jiang W, Zhuang D, Wang K (2010b) Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles. Int J Refrig 33(2):347–358. https://doi.org/10.1016/j.ijrefrig.2009.11.007. (PMID: 10.1016/j.ijrefrig.2009.11.007)
Peng H, Ding G, Hu H, Jiang W (2011) Effect of nanoparticle size on nucleate pool boiling heat transfer of refrigerant/oil mixture with nanoparticles. Int J Heat Mass Transf 54:1839–1850. https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.035. (PMID: 10.1016/j.ijheatmasstransfer.2010.12.035)
Peng H, Lin L, Ding G (2015) Influences of primary particle parameters and surfactant on aggregation behavior of nanoparticles in nanorefrigerant. Energy 89:410–420. https://doi.org/10.1016/j.energy.2015.05.116. (PMID: 10.1016/j.energy.2015.05.116)
Prabakaran R, Sivalingam V, Kim SC (2022) Future refrigerants with low global warming potential for residential air conditioning system: a thermodynamic analysis and MCDM tool optimization. Environ Sci Pollut Res 29:78414–78428. https://doi.org/10.1007/s11356-022-21263-1. (PMID: 10.1007/s11356-022-21263-1)
Richardson RN, Butterworth JS (1995) The performance of propane/isobutene mixtures in vapour-compression refrigerant system. Int J Refrig 18:58–62. https://doi.org/10.1016/0140-7007(94)P3712-A. (PMID: 10.1016/0140-7007(94)P3712-A)
Prapainnop R, Suen KO (2012) Effects of refrigerant properties on refrigerant performance comparison: a review. Int J Eng Res Appl 2:486–493.
Saidur R, Kazi SN, Hossain MS, Rahman MM, Mohamed HA (2011) A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renew Sustain Energy Rev 15:310–323. https://doi.org/10.1016/j.rser.2010.08.018. (PMID: 10.1016/j.rser.2010.08.018)
Sajid MU, Bicer Y (2020a) Nanofluids as solar spectrum splitters: a critical review. Sol Energy 207:974–1000. https://doi.org/10.1016/j.solener.2020.07.009. (PMID: 10.1016/j.solener.2020.07.009)
Sajid MU, Bicer Y (2020b) Performance assessment of spectrum selective nanofluid-based cooling for a self-sustaining greenhouse. Energ Technol 9(1):2000875. https://doi.org/10.1002/ente.202000875. (PMID: 10.1002/ente.202000875)
Sajid MU, Ali HM, Sufyan A, Rashid D, Zahid SU, Rehman WU (2019) Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim 137(4):1279–1294. https://doi.org/10.1007/s10973-019-08043-9. (PMID: 10.1007/s10973-019-08043-9)
Sarkar J, Bhattacharya S, Lal A (2013) Selection of suitable natural refrigerants pairs for cascade refrigeration system. Proc Inst Mech Eng: J Power Sources 227(5):612–622. https://doi.org/10.1177/0957650913487730. (PMID: 10.1177/0957650913487730)
Saterlie MS, Sahin H, Kavlicoglu B, Liu Y, Graeve OA (2012) Surfactant effects on dispersion characteristics of copper-based nanofluids: a dynamic light scattering study. Chem Mater 24(17):3299–3306. https://doi.org/10.1021/cm203853f. (PMID: 10.1021/cm203853f)
Sekhar SJ, Lal DM (2005) HFC 134a/HC600a/HC290 mixture a retrofit for CFC12 systems. Int J Refrig 28:735–743. https://doi.org/10.1016/j.ijrefrig.2004.12.005. (PMID: 10.1016/j.ijrefrig.2004.12.005)
Selvaraj DA, Victor K (2021) Vapour absorption refrigeration system for rural cold storage: a comparative study. Environ Sci Pollut Res 28:34248–34258. https://doi.org/10.1007/s11356-020-11214-z. (PMID: 10.1007/s11356-020-11214-z)
Shaik SV, Shaik S, Gorantla K (2020) Investigation on thermodynamic performance analysis and environmental effects of various new refrigerants used in air conditioners. Environ Sci Pollut Res 27:41415–41436. https://doi.org/10.1007/s11356-020-09478-6. (PMID: 10.1007/s11356-020-09478-6)
Sharma DK, Sharma D, Ali AHH (2020) A state of the art on solar-powered vapor absorption cooling systems integrated with thermal energy storage. Environ Sci Pollut Res 27:158–189. https://doi.org/10.1007/s11356-019-06941-x. (PMID: 10.1007/s11356-019-06941-x)
Spaushus HO (1988) CF-134a as a substitute refrigerant for CFC 12. Int J Refrig 11:389–392. (PMID: 10.1016/0140-7007(88)90063-1)
Steven Brown J, Yana-Motta SF, Domanski PA (2002) Comparative analysis of an automotive air conditioning systems operating with CO2 and R134a. Int J Refrig 25:19–32. https://doi.org/10.1016/S0140-7007(01)00011-1. (PMID: 10.1016/S0140-7007(01)00011-1)
Subramani N, Prakash MJ (2011) Experimental studies on a vapour compression system using nanorefrigerants. Int J Eng Sci Technol 3(9):95–102. https://doi.org/10.4314/ijest.v3i9.8. (PMID: 10.4314/ijest.v3i9.8)
Sun B, Yang D (2013a) Flow boiling heat transfer characteristics of nano-refrigerants in a horizontal tube. Int J Refrig 38:206–214. https://doi.org/10.1016/j.ijrefrig.2013.08.020. (PMID: 10.1016/j.ijrefrig.2013.08.020)
Sun B, Yang D (2013b) Experimental study on the heat transfer characteristics of nanorefrigerants in an internal thread copper tube. Int J Heat Mass Transf 64:559–566. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.031. (PMID: 10.1016/j.ijheatmasstransfer.2013.04.031)
Sundar LS, Ramanathan S, Sharma KV, Babu PS (2007) Temperature dependent flow characteristics of Ai2o3 nano fluid. Int J Nanotechnol Appl 1(2):35–44.
Tan H, Xu L, Yang L (2022) Operation performance of an ultralow-temperature cascade refrigeration freezer with environmentally friendly refrigerants R290-R170. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-24310-z.
Tang X, Zhao YH, Diao YH (2014) Experimental investigation of the nucleate pool boiling heat transfer characteristics of δ-Al2O3-R141b nanofluids on a horizontal plate. Exp Therm Fluid Sci 52:88–96. https://doi.org/10.1016/j.expthermflusci.2013.08.025. (PMID: 10.1016/j.expthermflusci.2013.08.025)
Tsai CY, Chien HT, Ding PP, Chan B, Luh TY, Chen PH (2004) Effect of structural character of gold nanoparticles in nano fluid on heat pipe thermal performance. Mater Lett 58:1461–1465. https://doi.org/10.1016/j.matlet.2003.10.009. (PMID: 10.1016/j.matlet.2003.10.009)
Wang R, Wu Q, Wu Y (2010) Use of nanoparticles to make mineral oil lubricants feasible for use in a residential air conditioner employing hydro-fluorocarbons refrigerants. Energ Buildings 42:2111–2117. https://doi.org/10.1016/j.enbuild.2010.06.023. (PMID: 10.1016/j.enbuild.2010.06.023)
Wang JJ, Zheng RT, Gao JW, Chen G (2012) Heat conduction mechanisms in nano fluids and suspensions. Nano Today 7:124–136. https://doi.org/10.1016/j.nantod.2012.02.007. (PMID: 10.1016/j.nantod.2012.02.007)
Wongwises S, Chimres N (2005) Experimental studies of hydrocarbon mixture to replace HFC134a in a domestic refrigerator. Energ Conver Manage 46:85–100. https://doi.org/10.1016/j.enconman.2004.02.011. (PMID: 10.1016/j.enconman.2004.02.011)
Wu C, Cho TJ, Xu J, Lee D, Yang B, Zachariah MR (2010) Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids. Phys Rev E 81(1):011406. https://doi.org/10.1103/physreve.81.011406. (PMID: 10.1103/physreve.81.011406)
Yang K-S et al (2010) An investigation of a top-mounted domestic refrigerator. Energy Convers Manag 51:1422–1427. https://doi.org/10.1016/j.enconman.2010.01.016. (PMID: 10.1016/j.enconman.2010.01.016)
Yang L, Du K, Niu X, Li Y, Zhang Y (2011) An experimental and theoretical study of the influence of surfactant on the preparation and stability of ammonia-water nanofluids. Int J Refrig 34(8):1741–1748. https://doi.org/10.1016/j.ijrefrig.2011.06.007. (PMID: 10.1016/j.ijrefrig.2011.06.007)
Yang D, Sun B, Li H, Fan X (2015) Experimental study on the heat transfer and flow characteristics of nanorefrigerants inside a corrugated tube. Int J Refrig 56:213–223. https://doi.org/10.1016/j.ijrefrig.2015.04.011. (PMID: 10.1016/j.ijrefrig.2015.04.011)
فهرسة مساهمة: Keywords: Alternative refrigerants; Eco-friendly refrigerants; Energy exergy analysis; Irreversibility analysis; Nanorefrigerant; VCRS
المشرفين على المادة: 0 (Hydrocarbons)
تواريخ الأحداث: Date Created: 20231127 Date Completed: 20240118 Latest Revision: 20240118
رمز التحديث: 20240118
DOI: 10.1007/s11356-023-30596-4
PMID: 38012498
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-023-30596-4