دورية أكاديمية

Efficient and Continuous Carrier-Envelope Phase Control for Terahertz Lightwave-Driven Scanning Probe Microscopy.

التفاصيل البيبلوغرافية
العنوان: Efficient and Continuous Carrier-Envelope Phase Control for Terahertz Lightwave-Driven Scanning Probe Microscopy.
المؤلفون: Allerbeck J; nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland., Kuttruff J; Department of Physics, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany., Bobzien L; nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland., Huberich L; nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland., Tsarev M; Department of Physics, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany., Schuler B; nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
المصدر: ACS photonics [ACS Photonics] 2023 Oct 11; Vol. 10 (11), pp. 3888-3895. Date of Electronic Publication: 2023 Oct 11 (Print Publication: 2023).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 101634366 Publication Model: eCollection Cited Medium: Print ISSN: 2330-4022 (Print) Linking ISSN: 23304022 NLM ISO Abbreviation: ACS Photonics Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : American Chemical Society, [2014-]
مستخلص: The fundamental understanding of quantum dynamics in advanced materials requires precise characterization at the limit of spatiotemporal resolution. Ultrafast scanning tunneling microscopy is a powerful tool combining the benefits of picosecond time resolution provided by single-cycle terahertz (THz) pulses and atomic spatial resolution of a scanning tunneling microscope (STM). For the selective excitation of localized electronic states, the transient field profile must be tailored to the energetic structure of the system. Here, we present an advanced THz-STM setup combining multi-MHz repetition rates, strong THz near fields, and continuous carrier-envelope phase (CEP) control of the transient waveform. In particular, we employ frustrated total internal reflection as an efficient and cost-effective method for precise CEP control of single-cycle THz pulses with >60% field transmissivity, high pointing stability, and continuous phase shifting of up to 0.75 π in the far and near field. Efficient THz generation and dispersion management enable peak THz voltages at the tip-sample junction exceeding 20 V at 1 MHz and 1 V at 41 MHz. The system comprises two distinct THz generation arms, which facilitate individual pulse shaping and amplitude modulation. This unique feature enables the flexible implementation of various THz pump-probe schemes, thereby facilitating the study of electronic and excitonic excited-state propagation in nanostructures and low-dimensional materials systems. Scalability of the repetition rate up to 41 MHz, combined with a state-of-the-art low-temperature STM, paves the way toward the investigation of dynamical processes in atomic quantum systems at their native length and time scales.
Competing Interests: The authors declare no competing financial interest.
(© 2023 The Authors. Published by American Chemical Society.)
References: Opt Lett. 2021 Jun 15;46(12):2944-2947. (PMID: 34129580)
Phys Rev Lett. 2004 Mar 19;92(11):113001. (PMID: 15089129)
ACS Photonics. 2020 Aug 19;7(8):2046-2055. (PMID: 32851116)
Opt Lett. 2016 Mar 1;41(5):986-9. (PMID: 26974097)
Nat Commun. 2023 Jan 4;14(1):11. (PMID: 36599838)
ACS Appl Mater Interfaces. 2022 Jun 2;:. (PMID: 35652202)
Science. 2016 Apr 22;352(6284):429-33. (PMID: 27102476)
Science. 2022 Apr 22;376(6591):401-405. (PMID: 35446636)
Phys Rev Lett. 2020 Feb 7;124(5):054801. (PMID: 32083908)
Nano Lett. 2018 Aug 8;18(8):5198-5204. (PMID: 30028952)
Opt Express. 2018 May 28;26(11):13876-13882. (PMID: 29877433)
Science. 2018 Jul 20;361(6399):251-255. (PMID: 30026221)
Opt Express. 2021 Jun 7;29(12):18889-18904. (PMID: 34154135)
Sci Adv. 2022 Oct 21;8(42):eabq5682. (PMID: 36269832)
Nature. 2020 Sep;585(7823):58-62. (PMID: 32879499)
J Phys Condens Matter. 2021 Jul 05;33(35):. (PMID: 33951618)
Opt Lett. 2001 Apr 15;26(8):485-7. (PMID: 18040360)
Opt Express. 2022 Jul 4;30(14):24186-24206. (PMID: 36236979)
Nature. 2016 Nov 09;539(7628):263-267. (PMID: 27830788)
Nat Commun. 2021 Nov 23;12(1):6794. (PMID: 34815398)
Opt Express. 2010 Jun 7;18(12):12311-27. (PMID: 20588357)
Opt Lett. 2020 May 1;45(9):2494-2497. (PMID: 32356799)
ACS Photonics. 2021 Mar 17;8(3):702-708. (PMID: 33763504)
تواريخ الأحداث: Date Created: 20231129 Latest Revision: 20231201
رمز التحديث: 20231201
مُعرف محوري في PubMed: PMC10655500
DOI: 10.1021/acsphotonics.3c00555
PMID: 38027247
قاعدة البيانات: MEDLINE
الوصف
تدمد:2330-4022
DOI:10.1021/acsphotonics.3c00555