دورية أكاديمية

Developmental and environmental plasticity in opsin gene expression in Lake Victoria cichlid fish.

التفاصيل البيبلوغرافية
العنوان: Developmental and environmental plasticity in opsin gene expression in Lake Victoria cichlid fish.
المؤلفون: Irazábal-González L; Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands., Wright DS; Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands., Maan ME; Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands.
المصدر: Evolution & development [Evol Dev] 2024 Jan; Vol. 26 (1), pp. e12465. Date of Electronic Publication: 2023 Dec 01.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Blackwell Science Country of Publication: United States NLM ID: 100883432 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1525-142X (Electronic) Linking ISSN: 1520541X NLM ISO Abbreviation: Evol Dev Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Malden, MA : Blackwell Science, c1999-
مواضيع طبية MeSH: Cichlids*/genetics , Cone Opsins*/genetics , Cone Opsins*/metabolism, Animals ; Opsins/genetics ; Opsins/metabolism ; Lakes ; Gene Expression ; Phylogeny
مستخلص: In many organisms, sensory abilities develop and evolve according to the changing demands of navigating, foraging, and communication across different environments and life stages. Teleost fish inhabit heterogeneous light environments and exhibit a large diversity in visual system properties among species. Cichlids are a classic example of this diversity; visual system variation is generated by different tuning mechanisms that involve both genetic factors and phenotypic plasticity. Here, we document the developmental progression of visual pigment gene expression in Lake Victoria cichlids and test if these patterns are influenced by variation in light conditions. We reared two sister species of Pundamilia to adulthood in two distinct visual conditions that resemble the light environments that they naturally inhabit in Lake Victoria. We also included interspecific first-generation hybrids. We focused on the four opsins that are expressed in Pundamilia adults (using real-time quantitative polymerase chain reaction (RT-qPCR)) (SWS2B, SWS2A, RH2A, and LWS) at 17 time points. We find that opsin expression profiles progress from shorter-wavelength sensitive opsins to longer-wavelength sensitive opsins with increasing age, in both species and their hybrids. The developmental trajectories of opsin expression also responded plastically to the visual conditions. Developmental and environmental plasticity in opsin expression may provide an important stepping stone in the evolution of cichlid visual system diversity.
(© 2023 The Authors. Evolution & Development published by Wiley Periodicals LLC.)
References: Bowmaker, J. K. (2008). Evolution of vertebrate visual pigments. Vision Research, 48(20), 2022-2041.
Bowmaker, J. K., Govardovskii, V. I., Shukolyukov, S. A., L.V. Zueva, J., Hunt, D. M., Sideleva, V. G., & Smirnova, O. G. (1994). Visual pigments and the photic environment: The cottoid fish of Lake Baikal. Vision Research, 34(5), 591-605.
Britt, L. L., Loew, E. R., & McFarland, W. N. (2001). Visual pigments in the early life stages of Pacific northwest marine fishes. Journal of Experimental Biology, 204(14), 2581-2587.
Browman, H. I., Novales-Flamarique, I., & Hawryshyn, C. W. (1994). Ultraviolet photoreception contributes to prey search behaviour in two species of zooplanktivorous fishes. Journal of Experimental Biology, 186(1), 187-198.
Carleton, K. L., Dalton, B. E., Escobar-Camacho, D., & Nandamuri, S. P. (2016). Proximate and ultimate causes of variable visual sensitivities: Insights from cichlid fish radiations. Genesis, 54(6), 299-325.
Carleton, K. L., & Kocher, T. D. (2001). Cone opsin genes of African cichlid fishes: Tuning spectral sensitivity by differential gene expression. Molecular Biology and Evolution, 18(8), 1540-1550.
Carleton, K. L., Parry, J. W. L., Bowmaker, J. K., Hunt, D. M., & Seehausen, O. (2005). Colour vision and speciation in Lake Victoria cichlids of the genus Pundamilia. Molecular Ecology, 14(14), 4341-4353.
Carleton, K. L., Spady, T. C., Streelman, J. T., Kidd, M. R., McFarland, W. N., & Loew, E. R. (2008). Visual sensitivities tuned by heterochronic shifts in opsin gene expression. BMC Biology, 6(1), 22.
Carleton, K. L., & Yourick, M. R. (2020). Axes of visual adaptation in the ecologically diverse family Cichlidae. Seminars in Cell & Developmental Biology, 106, 43-52. https://doi.org/10.1016/j.semcdb.2020.04.015.
Castillo Cajas, R. F., Selz, O. M., Ripmeester, E. A. P., Seehausen, O., & Maan, M. E. (2012). Species-specific relationships between water transparency and male coloration within and between two closely related Lake Victoria cichlid species. International Journal of Evolutionary Biology, 2012, 1-12.
Chang, C.-H., Catchen, J., Moran, R. L., Rivera-Colón, A. G., Wang, Y.-C., & Fuller, R. C. (2021). Sequence analysis and ontogenetic expression patterns of cone opsin genes in the bluefin killifish (Lucania goodei). Journal of Heredity, 112, 357-366. https://doi.org/10.1093/jhered/esab017.
Flamarique, I N. (2013). Opsin switch reveals function of the ultraviolet cone in fish foraging. Proceedings of the Royal Society B: Biological Sciences, 280(1752), 20122490.
Fryer, G., & Iles, T. D. (1972). Cichlid fishes of the great lakes of Africa: Their biology and evolution. Oliver and Boyd.
Goldschmidt, T., Witte, F., & De Visser, J. (1990). Ecological segregation in zooplanktivorous haplochromine species (Pisces: Cichlidae) from Lake Victoria. Oikos, 58, 343-355.
Halekoh, U., & Højsgaard, S. (2014). A kenward-roger approximation and parametric bootstrap methods for tests in linear mixed models-The R package pbkrtest. Journal of Statistical Software, 59(9), 1-30.
Halstenberg, S., Lindgren, K. M., Samagh, S. P. S., Nadal-vicens, M., Balt, S., & Fernald, R. D. (2005). Diurnal rhythm of cone opsin expression in the teleost fish Haplochromis burtoni. Visual Neuroscience, 22(2), 135-141.
Härer, A., Karagic, N., Meyer, A., & Torres-Dowdall, J. (2019). Reverting ontogeny: Rapid phenotypic plasticity of colour vision in cichlid fish. Royal Society Open Science, 6(7), 190841. https://doi.org/10.1098/rsos.190841.
Härer, A., Torres-Dowdall, J., & Meyer, A. (2017). Rapid adaptation to a novel light environment: The importance of ontogeny and phenotypic plasticity in shaping the visual system of Nicaraguan Midas cichlid fish (Amphilophus citrinellus spp.). Molecular Ecology, 26(20), 5582-5593.
Hofmann, C. M., O'Quin, K. E., Marshall, N. J., Cronin, T. W., Seehausen, O., & Carleton, K. L. (2009). The eyes have it: Regulatory and structural changes both underlie cichlid visual pigment diversity. PLoS Biology, 7(12), e1000266.
Kocher, T. D. (2004). Adaptive evolution and explosive speciation: The cichlid fish model. Nature Reviews Genetics, 5, 288-298. https://doi.org/10.1038/nrg1316.
Loew, E. R., & McFarland, W. N. (1990). The underwater visual environment. In M. D. E. Douglas (Ed.), The visual system of fish (pp. 1-43). Chapman and Hall.
Loew, E. R., & Wahl, C. M. (1991). A short-wavelength sensitive cone mechanism in juvenile yellow perch, Perca flavescens. Vision Research, 31(3), 353-360.
Maan, M. E., Seehausen, O., & Groothuis, T. G. G. (2017). Differential survival between visual environments supports a role of divergent sensory drive in cichlid fish speciation. The American Naturalist, 189(1), 78-85.
McKinney, M. L., & McNamara, K. J. (1991). Heterochrony: The evolution of ontogeny. Plenum Press.
Meier, J. I., Marques, D. A., Wagner, C. E., Excoffier, L., & Seehausen, O. (2018). Genomics of parallel ecological speciation in Lake Victoria cichlids. Molecular Biology and Evolution, 35(6), 1489-1506. https://doi.org/10.1093/molbev/msy051.
Meier, J. I., Sousa, V. C., Marques, D. A., Selz, O. M., Wagner, C. E., Excoffier, L., & Seehausen, O. (2017). Demographic modelling with whole-genome data reveals parallel origin of similar Pundamilia cichlid species after hybridization. Molecular Ecology, 26(1), 123-141. https://doi.org/10.1111/mec.13838.
O'quin, K. E., Smith, A. R., Sharma, A., & Carleton, K. L. (2011). New evidence for the role of heterochrony in the repeated evolution of cichlid opsin expression. Evolution & Development, 13(2), 193-203.
Parry, J. W. L., Carleton, K. L., Spady, T., Carboo, A., Hunt, D. M., & Bowmaker, J. K. (2005). Mix and match color vision: Tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Current Biology, 15(19), 1734-1739.
Ramakers, C., Ruijter, J. M., Deprez, R. H. L., & Moorman, A. F. M. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters, 339(1), 62-66. https://doi.org/10.1016/s0304-3940(02)01423-4.
Salzburger, W. (2018). Understanding explosive diversification through cichlid fish genomics. Nature Reviews Genetics, 19, 705-717. https://doi.org/10.1038/s41576-018-0043-9.
Sandkam, B. A., Campello, L., O'Brien, C., Nandamuri, S. P., Gammerdinger, W. J., Conte, M. A., Swaroop, A., & Carleton, K. L. (2020). Tbx2a modulates switching of RH2 and LWS opsin gene expression. Molecular Biology and Evolution, 37(7), 2002-2014. https://doi.org/10.1093/molbev/msaa062.
Seehausen, O. (2006). African cichlid fish: A model system in adaptive radiation research. Proceedings of the Royal Society B: Biological Sciences, 273, 1987-1998. https://doi.org/10.1098/rspb.2006.3539.
Seehausen, O., Terai, Y., Magalhaes, I. S., Carleton, K. L., Mrosso, H. D. J., Miyagi, R., Van Der Sluijs, I., Schneider, M. V., Maan, M. E., Tachida, H., Imai, H., & Okada, N. (2008). Speciation through sensory drive in cichlid fish. Nature, 455(7213), 620-626.
Stevens, M. (2013). Sensory ecology, behaviour, and evolution. Oxford University Press.
Veilleux, C. C., & Kirk, E. C. (2014). Visual acuity in mammals: Effects of eye size and ecology. Brain, Behavior and Evolution, 83(1), 43-53. https://doi.org/10.1159/000357830.
Venables, W., & Ripley, B. (2002). Random and mixed effects. In J. Chambers, W. Eddy, W. Härdle, S. Sheather, & L. Tierney (Eds.), Modern applied statistics with S (pp. 271-300). Springer.
West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.
Wright, D. S., Demandt, N., Alkema, J. T., Seehausen, O., Groothuis, T. G. G., & Maan, M. E. (2017). Developmental effects of visual environment on species-assortative mating preferences in Lake Victoria cichlid fish. Journal of Evolutionary Biology, 30(2), 289-299.
Wright, D. S., van Eijk, R., Schuart, L., Seehausen, O., Groothuis, T. G. G., & Maan, M. E. (2020). Testing sensory drive speciation in cichlid fish: Linking light conditions to opsin expression, opsin genotype and female mate preference. Journal of Evolutionary Biology, 33(4), 422-434. https://doi.org/10.1111/jeb.13577.
Wright, D. S., Meijer, R., van Eijk, R., Vos, W., Seehausen, O., & Maan, M. E. (2019). Geographic variation in opsin expression does not align with opsin genotype in Lake Victoria cichlid populations. Ecology and Evolution, 9(15), 8676-8689.
معلومات مُعتمدة: (SNSF PZ00P3-126340; to MM) Financial support came from the Swiss National Science Foundation; (NWO VENI 863.09.005; to MM) Netherlands Foundation for Scientific Research; Rijksuniversiteit Groningen
فهرسة مساهمة: Keywords: Pundamilia; adaptation; heterochrony; light; vision
المشرفين على المادة: 0 (Opsins)
0 (Cone Opsins)
تواريخ الأحداث: Date Created: 20231202 Date Completed: 20240111 Latest Revision: 20240116
رمز التحديث: 20240117
DOI: 10.1111/ede.12465
PMID: 38041513
قاعدة البيانات: MEDLINE
الوصف
تدمد:1525-142X
DOI:10.1111/ede.12465