دورية أكاديمية

Associations between human milk oligosaccharides and infant growth in a Bangladeshi mother-infant cohort.

التفاصيل البيبلوغرافية
العنوان: Associations between human milk oligosaccharides and infant growth in a Bangladeshi mother-infant cohort.
المؤلفون: Loutet MG; The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada. miranda.loutet@sickkids.ca.; The University of Toronto, Toronto, ON, M5S 1A1, Canada. miranda.loutet@sickkids.ca., Narimani A; The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada., Qamar H; The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada., Yonemitsu C; University of California San Diego, San Diego, CA, USA., Pell LG; The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada., Mahmud AA; Nutrition and Clinical Services Division, icddr,b, Dhaka, Bangladesh., Ahmed T; Nutrition and Clinical Services Division, icddr,b, Dhaka, Bangladesh., Bode L; University of California San Diego, San Diego, CA, USA., Bassani DG; The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada., Roth DE; The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.; The University of Toronto, Toronto, ON, M5S 1A1, Canada.
المصدر: Pediatric research [Pediatr Res] 2023 Dec 05. Date of Electronic Publication: 2023 Dec 05.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: United States NLM ID: 0100714 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1530-0447 (Electronic) Linking ISSN: 00313998 NLM ISO Abbreviation: Pediatr Res Subsets: MEDLINE
أسماء مطبوعة: Publication: 2012- : New York : Nature Publishing Group
Original Publication: Basel ; New York : Karger.
مستخلص: Background: We aimed to estimate associations between human milk oligosaccharides (HMOs) and infant growth (length-for-age (LAZ) and weight-for-length (WLZ) z-scores) at 12 months postnatal age.
Methods: In this secondary analysis of data from a maternal vitamin D trial in Dhaka, Bangladesh (N = 192), absolute concentrations of HMOs were measured in 13 ± 1 week(s) postpartum milk samples, infant anthropometric measurements were obtained soon after birth and at 12 months postpartum, and infant feeding was classified during 6 months postpartum. Associations between individual HMOs or HMO groups and LAZ or WLZ were estimated by multivariable linear regression adjusting for infant feeding pattern, maternal secretor status, and other potential confounders.
Results: The concentrations of 6'sialyllactose, lacto-N-neotetraose, and the non-fucosylated non-sialylated HMOs were inversely associated with LAZ at 12 months of age, whereas the fucosylated non-sialylated HMO concentration was positively associated with LAZ at 12 months. These associations were robust in analyses restricted to infants who were primarily exclusively/predominantly fed human milk during the first 3 (or 6) months.
Conclusions: Since HMOs are both positively and negatively associated with postnatal growth, there is a need for randomized trials to estimate the causal benefits and risks of exogenously administered HMOs on infant growth and other health outcomes.
Impact: 6'sialyllactose, lacto-N-neotetraose, and the non-fucosylated non-sialylated human milk oligosaccharides (HMOs) were inversely associated with length-for-age z-scores (LAZ) at 12 months, whereas the fucosylated non-sialylated HMO concentration was positively associated with LAZ at 12 months among Bangladeshi infants. Associations between individual and grouped HMOs with infant length growth at 12 months were as strong or stronger in analyses restricted to infants who were exclusively or predominantly fed human milk up to 3 (or 6) months. Randomized trials are needed to characterize the effects of specific HMOs on infant growth, particularly in countries where postnatal linear growth faltering is common.
(© 2023. The Author(s).)
References: Christian, P. et al. The need to study human milk as a biological system. Am. J. Clin. Nutr. 113, 1063–1072 (2021). (PMID: 3383195210.1093/ajcn/nqab0758106761)
Ma, J., Palmer, D. J., Geddes, D., Lai, C. T. & Stinson, L. Human milk microbiome and microbiome-related products: potential modulators of infant growth. Nutrients 14, 5148 (2022). (PMID: 3650117810.3390/nu142351489737635)
Bode, L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22, 1147–1162 (2012). (PMID: 2251303610.1093/glycob/cws0743406618)
Zivkovic, A. M., German, J. B., Lebrilla, C. B. & Mills, D. A. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc. Natl Acad. Sci. USA 108, 4653–4658 (2011). (PMID: 2067919710.1073/pnas.1000083107)
Gnoth, M. J., Kunz, C., Kinne-Saffran, E. & Rudloff, S. Human milk oligosaccharides are minimally digested in vitro. J. Nutr. 130, 3014–3020 (2000). (PMID: 1111086110.1093/jn/130.12.3014)
Engfer, M. B., Stahl, B., Finke, B., Sawatzki, G. & Daniel, H. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am. J. Clin. Nutr. 71, 1589–1596 (2000). (PMID: 1083730310.1093/ajcn/71.6.1589)
Bridgman, S. L. et al. Fecal short-chain fatty acid variations by breastfeeding status in infants at 4 months: differences in relative versus absolute concentrations. Front. Nutr. 4, 11 (2017). (PMID: 2844328410.3389/fnut.2017.000115385454)
Gustafsson, A. et al. Carbohydrate-dependent inhibition of Helicobacter pylori colonization using porcine milk. Glycobiology 16, 1–10 (2006). (PMID: 1611828710.1093/glycob/cwj031)
Simon, P. M., Goode, P. L., Mobasseri, A. & Zopf, D. Inhibition of Helicobacter pylori binding to gastrointestinal epithelial cells by sialic acid-containing oligosaccharides. Infect. Immun. 65, 750–757 (1997). (PMID: 900933810.1128/iai.65.2.750-757.1997176121)
Bode, L. The functional biology of human milk oligosaccharides. Early Hum. Dev. 91, 619–622 (2015). (PMID: 2637535410.1016/j.earlhumdev.2015.09.001)
Rudloff, S. et al. Incorporation of orally applied 13C-galactose into milk lactose and oligosaccharides. Glycobiology 16, 477–487 (2006). (PMID: 1649533010.1093/glycob/cwj092)
Rudloff, S., Pohlentz, G., Borsch, C., Lentze, M. J. & Kunz, C. Urinary excretion of in vivo 13C-labelled milk oligosaccharides in breastfed infants. Br. J. Nutr. 107, 957–963 (2012). (PMID: 2188874010.1017/S0007114511004016)
Rudloff, S., Pohlentz, G., Diekmann, L., Egge, H. & Kunz, C. Urinary excretion of lactose and oligosaccharides in preterm infants fed human milk or infant formula. Acta Paediatr. 85, 598–603 (1996). (PMID: 882710610.1111/j.1651-2227.1996.tb14095.x)
Kumazaki, T. & Yoshida, A. Biochemical evidence that secretor gene, Se, is a structural gene encoding a specific fucosyltransferase. Proc. Natl Acad. Sci. USA 81, 4193–4197 (1984). (PMID: 658838210.1073/pnas.81.13.4193345395)
Johnson, P. H. & Watkins, W. M. Purification of the Lewis blood-group gene associated α-3/4-fucosyltransferase from human milk: an enzyme transferring fucose primarily to type 1 and lactose-based oligosaccharide chains. Glycoconj. J. 9, 241–249 (1992). (PMID: 149010310.1007/BF00731136)
Kunz, C., Rudloff, S., Baier, W., Klein, N. & Strobel, S. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu. Rev. Nutr. 20, 699–722 (2000). (PMID: 1094035010.1146/annurev.nutr.20.1.699)
Erney, R. M. et al. Variability of human milk neutral oligosaccharides in a diverse population. J. Pediatr. Gastroenterol. Nutr. 30, 181–192 (2000). (PMID: 1069713810.1097/00005176-200002000-00016)
McGuire, M. K. et al. What’s normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically, 2. Am. J. Clin. Nutr. 105, 1086–1100 (2017). (PMID: 2835627810.3945/ajcn.116.1399805402033)
Azad, M. B. et al. Human milk oligosaccharide concentrations are associated with multiple fixed and modifiable maternal characteristics, environmental factors, and feeding practices. J. Nutr. 148, 1733–1742 (2018). (PMID: 3024764610.1093/jn/nxy175)
Seferovic, M. D. et al. Maternal diet alters human milk oligosaccharide composition with implications for the milk metagenome. Sci. Rep. 10, 1–18 (2020). (PMID: 10.1038/s41598-020-79022-6)
Han, S. M. et al. Maternal and infant factors influencing human milk oligosaccharide composition: beyond maternal genetics. J. Nutr. 151, 1383–1393 (2021). (PMID: 3376822410.1093/jn/nxab028)
LeMay-Nedjelski, L. et al. Oligosaccharides and microbiota in human milk are interrelated at 3 months postpartum in a cohort of women with a high prevalence of gestational impaired glucose tolerance. J. Nutr. 151, 3431–3441 (2021).
Soyyılmaz, B. et al. The mean of milk: a review of human milk oligosaccharide concentrations throughout lactation. Nutrients 13, 2737 (2021). (PMID: 3444489710.3390/nu130827378398195)
Thum, C. et al. Changes in HMO concentrations throughout lactation: influencing factors, health effects and opportunities. Nutrients 13, 2272 (2021). (PMID: 3420924110.3390/nu130722728308359)
Charbonneau, M. R. et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164, 859–871 (2016). (PMID: 2689832910.1016/j.cell.2016.01.0244793393)
Cowardin, C. A. et al. Mechanisms by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse model of infant undernutrition. Proc. Natl Acad. Sci. USA 116, 11988–11996 (2019). (PMID: 3113869210.1073/pnas.18217701166575181)
Jorgensen, J. M. et al. Associations of human milk oligosaccharides and bioactive proteins with infant growth and development among Malawian mother-infant dyads. Am. J. Clin. Nutr. 113, 209–220 (2021). (PMID: 3309655610.1093/ajcn/nqaa272)
Davis, J. C. C. et al. Growth and morbidity of Gambian infants are influenced by maternal milk oligosaccharides and infant gut microbiota. Sci. Rep. 7, 1–16 (2017). (PMID: 10.1038/srep40466)
Larsson, M. W. et al. Human milk oligosaccharide composition is associated with excessive weight gain during exclusive breastfeeding—an explorative study. Front. Pediatr. 7, 297 (2019). (PMID: 3138032910.3389/fped.2019.002976657391)
Lagström, H. et al. Associations between human milk oligosaccharides and growth in infancy and early childhood. Am. J. Clin. Nutr. 111, 769–778 (2020). (PMID: 3206877610.1093/ajcn/nqaa0107138667)
M Tonon, K., B de Morais M, Fv Abrão, A. C., Miranda, A. & B Morais, T. Maternal and infant factors associated with human milk oligosaccharides concentrations according to secretor and Lewis phenotypes. Nutrients 11, 1358 (2019). (PMID: 3121292010.3390/nu110613586628139)
Cheema, A. S. et al. Human milk oligosaccharides and bacterial profile modulate infant body composition during exclusive breastfeeding. Int. J. Mol. Sci. 23, 2865 (2022). (PMID: 3527000610.3390/ijms230528658911220)
Menzel, P. et al. Concentrations of oligosaccharides in human milk and child growth. BMC Pediatr. 21, 1–11 (2021). (PMID: 10.1186/s12887-021-02953-0)
Alderete, T. L. et al. Associations between human milk oligosaccharides and infant body composition in the first 6 mo of life. Am. J. Clin. Nutr. 102, 1381–1388 (2015). (PMID: 2651122410.3945/ajcn.115.1154516546222)
Binia, A. et al. Human milk oligosaccharides, infant growth, and adiposity over the first 4 months of lactation. Pediatr. Res. 90, 684–693 (2021). (PMID: 3344692110.1038/s41390-020-01328-y)
Puccio, G. et al. Effects of infant formula with human milk oligosaccharides on growth and morbidity: a randomized multicenter trial. J. Pediatr. Gastroenterol. Nutr. 64, 624 (2017). (PMID: 2810728810.1097/MPG.00000000000015205378003)
Marriage, B. J., Buck, R. H., Goehring, K. C., Oliver, J. S. & Williams, J. A. Infants fed a lower calorie formula with 2′ FL show growth and 2′ FL uptake like breast-fed infants. J. Pediatr. Gastroenterol. Nutr. 61, 649 (2015). (PMID: 2615402910.1097/MPG.00000000000008894645963)
Vandenplas, Y. et al. Human milk oligosaccharides: 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients 10, 1161 (2018). (PMID: 3014957310.3390/nu100911616164445)
Victora, C. G. et al. Maternal and child undernutrition: consequences for adult health and human capital. Lancet 371, 340–357 (2008). (PMID: 1820622310.1016/S0140-6736(07)61692-42258311)
Black, R. E. et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382, 427–451 (2013). (PMID: 2374677210.1016/S0140-6736(13)60937-X)
Walker, S. P. et al. Inequality in early childhood: risk and protective factors for early child development. Lancet 378, 1325–1338 (2011). (PMID: 2194437510.1016/S0140-6736(11)60555-2)
Grantham-McGregor, S. et al. Developmental potential in the first 5 years for children in developing countries. Lancet 369, 60–70 (2007). (PMID: 1720864310.1016/S0140-6736(07)60032-42270351)
Fischer Walker, C. L. et al. Does childhood diarrhea influence cognition beyond the diarrhea-stunting pathway? PLoS ONE 7, e47908 (2012). (PMID: 2311890610.1371/journal.pone.00479083485308)
Kuklina, E. V., Ramakrishnan, U., Stein, A. D., Barnhart, H. H. & Martorell, R. Early childhood growth and development in rural Guatemala. Early Hum. Dev. 82, 425–433 (2006). (PMID: 1643104210.1016/j.earlhumdev.2005.10.018)
Belfort, M. B. & Ramel, S. E. NICU diet, physical growth and nutrient accretion, and preterm infant brain development. Neoreviews 20, e385–e396 (2019). (PMID: 3126110510.1542/neo.20-7-e385)
Ramel, S. E. et al. The relationship of poor linear growth velocity with neonatal illness and two-year neurodevelopment in preterm infants. Neonatology 102, 19–24 (2012). (PMID: 2244150810.1159/000336127)
Roth, D. E. et al. Maternal vitamin D supplementation during pregnancy and lactation to promote infant growth in Dhaka, Bangladesh (MDIG trial): study protocol for a randomized controlled trial. Trials 16, 300 (2015). (PMID: 2616978110.1186/s13063-015-0825-84499946)
Pell, L. G. et al. The human-milk oligosaccharide profile of lactating women in Dhaka, Bangladesh. Curr. Dev. Nutr. 5, nzab137 (2021). (PMID: 3499338810.1093/cdn/nzab1378728024)
Ismail, L. C. et al. Gestational weight gain standards based on women enrolled in the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project: a prospective longitudinal cohort study. BMJ 352, i555 (2016).
Eiwegger, T. et al. Human milk–derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro. Pediatr. Res. 56, 536 (2004). (PMID: 1529509310.1203/01.PDR.0000139411.35619.B4)
Eiwegger, T. et al. Prebiotic oligosaccharides: in vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties. Pediatr. Allergy Immunol. 21, 1179–1188 (2010). (PMID: 2044414710.1111/j.1399-3038.2010.01062.x)
Bode, L. et al. Human milk oligosaccharide concentration and risk of postnatal transmission of HIV through breastfeeding. Am. J. Clin. Nutr. 96, 831–839 (2012). (PMID: 2289493910.3945/ajcn.112.0395033441110)
Naarding, M. A. et al. Lewis X component in human milk binds DC-SIGN and inhibits HIV-1 transfer to CD4+ T lymphocytes. J. Clin. Investig. 115, 3256–3264 (2005). (PMID: 1623996410.1172/JCI251051257537)
Nissan, C., Naidu, N., Choudhury, B. & Bode, L. A new HPLC‐based method to profile and quantify human milk oligosaccharides from as little as 1 μL milk. FASEB J. 24, 556–20 (2010). (PMID: 10.1096/fasebj.24.1_supplement.556.20)
World Health Organization. WHO child growth standards. https://www.who.int/toolkits/child-growth-standards (2023).
Villar, J. et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 384, 857–868 (2014). (PMID: 2520948710.1016/S0140-6736(14)60932-6)
Villar, J. et al. Postnatal growth standards for preterm infants: the Preterm Postnatal Follow-up Study of the INTERGROWTH-21st Project. Lancet Glob. Health 3, e681–e691 (2015). (PMID: 2647501510.1016/S2214-109X(15)00163-1)
World Health Organization. Indicators for Assessing Infant and Young Child Feeding Practices Part 1 Definitions (Department of Child and Adolescent Health and Development, World Health Organization, 2007).
World Health Organization. Indicators for Assessing Infant and Young Child Feeding Practices: Definitions and Measurement Methods (World Health Organization, 2021).
Silverberg, S. L. et al. Do early infant feeding practices and modifiable household behaviors contribute to age-specific interindividual variations in infant linear growth? Evidence from a birth cohort in Dhaka, Bangladesh. Curr. Dev. Nutr. 5, nzab077 (2021).
Barratt, M. J. et al. Bifidobacterium infantis treatment promotes weight gain in Bangladeshi infants with severe acute malnutrition. Sci. Transl. Med. 14, eabk1107 (2022). (PMID: 3541718810.1126/scitranslmed.abk11079516695)
Nuzhat, S. et al. Association of human milk oligosaccharides and nutritional status of young infants among Bangladeshi mother–infant dyads. Sci. Rep. 12, 1–9 (2022). (PMID: 10.1038/s41598-022-13296-w)
Saben, J. L., Sims, C. R., Abraham, A., Bode, L. & Andres, A. Human milk oligosaccharide concentrations and infant intakes are associated with maternal overweight and obesity and predict infant growth. Nutrients 13, 446 (2021). (PMID: 3357288110.3390/nu130204467911788)
Rousseaux, A. et al. Human milk oligosaccharides: their effects on the host and their potential as therapeutic agents. Front. Immunol. 12, 680911 (2021). (PMID: 3410897410.3389/fimmu.2021.6809118180913)
Borewicz, K. et al. Correlating infant fecal microbiota composition and human milk oligosaccharide consumption by microbiota of 1‐month‐old breastfed infants. Mol. Nutr. Food Res. 63, 1801214 (2019). (PMID: 3101734310.1002/mnfr.2018012146618098)
Borewicz, K. et al. The association between breastmilk oligosaccharides and faecal microbiota in healthy breastfed infants at two, six, and twelve weeks of age. Sci. Rep. 10, 1–12 (2020). (PMID: 10.1038/s41598-020-61024-z)
تواريخ الأحداث: Date Created: 20231205 Latest Revision: 20231205
رمز التحديث: 20231206
DOI: 10.1038/s41390-023-02927-1
PMID: 38052861
قاعدة البيانات: MEDLINE
الوصف
تدمد:1530-0447
DOI:10.1038/s41390-023-02927-1