دورية أكاديمية

BACH1 promotes tissue necrosis and Mycobacterium tuberculosis susceptibility.

التفاصيل البيبلوغرافية
العنوان: BACH1 promotes tissue necrosis and Mycobacterium tuberculosis susceptibility.
المؤلفون: Amaral EP; Immunobiology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA. eduardo.amaral@nih.gov., Namasivayam S; Immunobiology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA., Queiroz ATL; Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil., Fukutani E; Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil., Hilligan KL; Immunobiology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA., Aberman K; Immunobiology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA., Fisher L; Immunobiology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA.; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA., Bomfim CCB; Immunobiology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA., Kauffman K; T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA., Buchanan J; T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA., Santuo L; T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA., Gazzinelli-Guimaraes PH; Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA., Costa DL; Immunobiology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA.; Departmento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.; Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil., Teixeira MA; Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil., Barreto-Duarte B; Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil.; Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.; Curso de Medicina, Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Bahia, Brazil., Rocha CG; Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador, Bahia, Brazil.; Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Sao Rafael Hospital, Salvador, Bahia, Brazil., Santana MF; Departmento de Ensino e Pesquisa, Fundação Centro de Controle de Oncologia do Estado do Amazonas-FCECON, Manaus, Amazonas, Brazil.; Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil.; Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil., Cordeiro-Santos M; Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil.; Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil.; Faculdade de Medicina, Universidade Nilton Lins, Manaus, Amazonas, Brazil., Barber DL; T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA., Wilkinson RJ; Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.; The Francis Crick Institute, London, UK.; Department of Infectious Disease, Imperial College London, London, UK., Kramnik I; Boston University School of Medicine, Boston, MA, USA., Igarashi K; Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan., Scriba T; South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Observatory, South Africa., Mayer-Barber KD; Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA., Andrade BB; Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil.; Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.; Curso de Medicina, Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Bahia, Brazil.; Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador, Bahia, Brazil.; Curso de Medicina, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil.; Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil.; Curso de Medicina, Universidade Faculdade de Tecnologia e Ciências (UniFTC), Salvador, Bahia, Brazil.; Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA., Sher A; Immunobiology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA. asher@niaid.nih.gov.
المصدر: Nature microbiology [Nat Microbiol] 2024 Jan; Vol. 9 (1), pp. 120-135. Date of Electronic Publication: 2023 Dec 08.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101674869 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2058-5276 (Electronic) Linking ISSN: 20585276 NLM ISO Abbreviation: Nat Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Publishing Group, [2016]-
مواضيع طبية MeSH: Mycobacterium tuberculosis*/genetics , Tuberculosis*/microbiology , Tuberculosis, Pulmonary*/genetics, Animals ; Mice ; Basic-Leucine Zipper Transcription Factors/genetics ; Macrophages/microbiology ; Necrosis
مستخلص: Oxidative stress triggers ferroptosis, a form of cellular necrosis characterized by iron-dependent lipid peroxidation, and has been implicated in Mycobacterium tuberculosis (Mtb) pathogenesis. We investigated whether Bach1, a transcription factor that represses multiple antioxidant genes, regulates host resistance to Mtb. We found that BACH1 expression is associated clinically with active pulmonary tuberculosis. Bach1 deletion in Mtb-infected mice increased glutathione levels and Gpx4 expression that inhibit lipid peroxidation. Bach1 -/- macrophages exhibited increased resistance to Mtb-induced cell death, while Mtb-infected Bach1-deficient mice displayed reduced bacterial loads, pulmonary necrosis and lipid peroxidation concurrent with increased survival. Single-cell RNA-seq analysis of lungs from Mtb-infected Bach1 -/- mice revealed an enrichment of genes associated with ferroptosis suppression. Bach1 depletion in Mtb-infected B6.Sst1 S mice that display human-like necrotic lung pathology also markedly reduced necrosis and increased host resistance. These findings identify Bach1 as a key regulator of cellular and tissue necrosis and host resistance in Mtb infection.
(© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
References: Global Tuberculosis Report (World Health Organization, 2022).
Cohen, S. B. et al. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe 24, 439–446 (2018).
Rothchild, A. C. et al. Alveolar macrophages generate a noncanonical NRF2-driven transcriptional response to Mycobacterium tuberculosis in vivo. Sci. Immunol. 4, eaaw6693 (2019).
Flynn, J. L. & Chan, J. Immune cell interactions in tuberculosis. Cell 185, 4682–4702 (2022). (PMID: 10.1016/j.cell.2022.10.02536493751)
Lee, J., Repasy, T., Papavinasasundaram, K., Sassetti, C. & Kornfeld, H. Mycobacterium tuberculosis induces an atypical cell death mode to escape from infected macrophages. PLoS ONE 6, e18367 (2011). (PMID: 10.1371/journal.pone.0018367214838323069075)
Pajuelo, D. et al. NAD + depletion triggers macrophage necroptosis, a cell death pathway exploited by Mycobacterium tuberculosis. Cell Rep. 24, 429–440 (2018). (PMID: 10.1016/j.celrep.2018.06.042299961036136256)
Beckwith, K. S. et al. Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection. Nat. Commun. 11, 2270 (2020). (PMID: 10.1038/s41467-020-16143-6323853017210277)
Moreira-Teixeira, L. et al. Type I IFN exacerbates disease in tuberculosis-susceptible mice by inducing neutrophil-mediated lung inflammation and NETosis. Nat. Commun. 11, 5566 (2020). (PMID: 10.1038/s41467-020-19412-6331491417643080)
Mayer-Barber, K. D. et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511, 99–103 (2014). (PMID: 10.1038/nature13489249907504809146)
Zhang, L., Jiang, X., Pfau, D., Ling, Y. & Nathan, C. F. Type I interferon signaling mediates Mycobacterium tuberculosis-induced macrophage death. J. Exp. Med. 218, e20200887 (2021).
Amaral, E. P. et al. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J. Exp. Med. 216, 556–570 (2019). (PMID: 10.1084/jem.20181776307870336400546)
Smulan, L. J. et al. Sirtuin 3 Downregulation in Mycobacterium tuberculosis-infected macrophages reprograms mitochondrial metabolism and promotes cell death. mBio 12, e03140-20 (2021).
Amaral, E. P. et al. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J. Exp. Med. 219, e20220504 (2022).
Qiang, L. et al. A mycobacterial effector promotes ferroptosis-dependent pathogenicity and dissemination. Nat. Commun. 14, 1430 (2023).
Shi, X. et al. Mycobacterium tuberculosis Rv1324 protein contributes to mycobacterial persistence and causes pathological lung injury in mice by inducing ferroptosis. Microbiol. Spectr. 11, e0252622 (2023). (PMID: 10.1128/spectrum.02526-2236625672)
Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012). (PMID: 10.1016/j.cell.2012.03.042226329703367386)
Venketaraman, V. et al. Glutathione levels and immune responses in tuberculosis patients. Microb. Pathog. 44, 255–261 (2008). (PMID: 10.1016/j.micpath.2007.09.00217959342)
Amaral, E. P. et al. N-acetyl-cysteine exhibits potent anti-mycobacterial activity in addition to its known anti-oxidative functions. BMC Microbiol. 16, 251 (2016). (PMID: 10.1186/s12866-016-0872-7277931045084440)
Perluigi, M., Tramutola, A., Pagnotta, S., Barone, E. & Butterfield, D. A. The BACH1/Nrf2 axis in brain in Down Syndrome and transition to Alzheimer disease-like neuropathology and dementia. Antioxidants 9, 779 (2020).
Davinelli, S. et al. Targeting NRF2-KEAP1 axis by omega-3 fatty acids and their derivatives: emerging opportunities against aging and diseases. Free Radic. Biol. Med. 193, 736–750 (2022). (PMID: 10.1016/j.freeradbiomed.2022.11.01736402440)
Ji, G. et al. Functional polymorphism in the NFE2L2 gene associated with tuberculosis susceptibility. Front. Immunol. 12, 660384 (2021). (PMID: 10.3389/fimmu.2021.660384341089638181729)
Chinta, K. C. et al. Microanatomic distribution of myeloid heme oxygenase-1 protects against free radical-mediated immunopathology in human tuberculosis. Cell Rep. 25, 1938–1952 (2018).
Reddy, V. P. et al. Ferritin H deficiency in myeloid compartments dysregulates host energy metabolism and increases susceptibility to Mycobacterium tuberculosis infection. Front. Immunol. 9, 860 (2018). (PMID: 10.3389/fimmu.2018.00860297740235943674)
Igarashi, K., Nishizawa, H., Saiki, Y. & Matsumoto, M. The transcription factor BACH1 at the crossroads of cancer biology: from epithelial-mesenchymal transition to ferroptosis. J. Biol. Chem. 297, 101032 (2021). (PMID: 10.1016/j.jbc.2021.101032343397408387770)
Jia, M. et al. Deletion of BACH1 attenuates atherosclerosis by reducing endothelial inflammation. Circ. Res. 130, 1038–1055 (2022). (PMID: 10.1161/CIRCRESAHA.121.31954035196865)
Liu, Y. et al. BTB and CNC homology 1 inhibition ameliorates fibrosis and inflammation via blocking ERK pathway in pulmonary fibrosis. Exp. Lung Res. 47, 67–77 (2021). (PMID: 10.1080/01902148.2020.184944833238752)
Cai, L. et al. BACH1-hemoxygenase-1 axis regulates cellular energetics and survival following sepsis. Free Radic. Biol. Med. 188, 134–145 (2022). (PMID: 10.1016/j.freeradbiomed.2022.06.0053569151010507736)
Nishizawa, H. et al. Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1. J. Biol. Chem. 295, 69–82 (2020). (PMID: 10.1074/jbc.RA119.00954831740582)
Anderson, N. M. & Simon, M. C. BACH1 orchestrates lung cancer metastasis. Cell 178, 265–267 (2019). (PMID: 10.1016/j.cell.2019.06.02031257029)
Yamada, K. et al. Modulation of the secondary injury process after spinal cord injury in Bach1-deficient mice by heme oxygenase-1. J. Neurosurg. Spine 9, 611–620 (2008). (PMID: 10.3171/SPI.2008.10.0848819035757)
Yu, S., Zhai, J., Yu, J., Yang, Q. & Yang, J. Downregulation of BACH1 protects against cerebral ischemia/reperfusion injury through the functions of HO-1 and NQO1. Neuroscience 436, 154–166 (2020). (PMID: 10.1016/j.neuroscience.2020.04.01432311410)
Ahuja, M. et al. Bach1 derepression is neuroprotective in a mouse model of Parkinson’s disease. Proc. Natl Acad. Sci. USA 118, e2111643118 (2021).
Moreira-Teixeira, L. et al. Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis. Nat. Immunol. 21, 464–476 (2020). (PMID: 10.1038/s41590-020-0610-z322058827116040)
Zak, D. E. et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 387, 2312–2322 (2016). (PMID: 10.1016/S0140-6736(15)01316-1270173105392204)
Kauffman, K. D. et al. PD-1 blockade exacerbates Mycobacterium tuberculosis infection in rhesus macaques. Sci. Immunol. 6, eabf3861 (2021).
Ji, D. X. et al. Type I interferon-driven susceptibility to Mycobacterium tuberculosis is mediated by IL-1Ra. Nat. Microbiol. 4, 2128–2135 (2019). (PMID: 10.1038/s41564-019-0578-3316116446879852)
Bhattacharya, B. et al. The integrated stress response mediates necrosis in murine Mycobacterium tuberculosis granulomas. J. Clin. Invest. 131, e130319 (2021).
Hong, Y., Lin, M., Ou, D., Huang, Z. & Shen, P. A novel ferroptosis-related 12-gene signature predicts clinical prognosis and reveals immune relevancy in clear cell renal cell carcinoma. BMC Cancer 21, 831 (2021). (PMID: 10.1186/s12885-021-08559-0342815318290606)
Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017). (PMID: 10.1016/j.cell.2017.09.021289855605685180)
Stockwell, B. R., Jiang, X. & Gu, W. Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol. 30, 478–490 (2020). (PMID: 10.1016/j.tcb.2020.02.009324133177230071)
Amaral, E. P. et al. The interplay between systemic inflammation, oxidative stress, and tissue remodeling in tuberculosis. Antioxid. Redox Signal. 34, 471–485 (2021). (PMID: 10.1089/ars.2020.8124325594108020551)
Roca, F. J., Whitworth, L. J., Redmond, S., Jones, A. A. & Ramakrishnan, L. TNF induces pathogenic programmed macrophage necrosis in tuberculosis through a mitochondrial-lysosomal-endoplasmic reticulum circuit. Cell 178, 1344–1361 (2019).
Kishimoto, D. et al. Dysregulated heme oxygenase-1 low M2-like macrophages augment lupus nephritis via Bach1 induced by type I interferons. Arthritis Res. Ther. 20, 64 (2018). (PMID: 10.1186/s13075-018-1568-1296360915894134)
Alam, Z. et al. Counter regulation of Spic by NF-kappaB and STAT signaling controls inflammation and iron metabolism in macrophages. Cell Rep. 31, 107825 (2020). (PMID: 10.1016/j.celrep.2020.107825326101268944937)
de Oliveira, J., Denadai, M. B. & Costa, D. L. Crosstalk between heme oxygenase-1 and iron metabolism in macrophages: implications for the modulation of inflammation and immunity. Antioxidants 11, 861 (2022).
Ingold, I. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172, 409–422 (2018).
Cao, R. et al. Effects of glutathione diminishment on the immune responses against Mycobacterium tuberculosis infection. Appl. Sci. 11, 8274 (2021).
Dang, D. et al. Heme induces intestinal epithelial cell ferroptosis via mitochondrial dysfunction in transfusion-associated necrotizing enterocolitis. FASEB J. 36, e22649 (2022). (PMID: 10.1096/fj.202200853RRR36383399)
Yang, Y. et al. Interaction between macrophages and ferroptosis. Cell Death Dis. 13, 355 (2022). (PMID: 10.1038/s41419-022-04775-z354299909013379)
معلومات مُعتمدة: United Kingdom WT_ Wellcome Trust; CC2112 United Kingdom ARC_ Arthritis Research UK; R01 HL126066 United States HL NHLBI NIH HHS; U01 AI115940 United States AI NIAID NIH HHS
المشرفين على المادة: 0 (Basic-Leucine Zipper Transcription Factors)
0 (Bach1 protein, mouse)
تواريخ الأحداث: Date Created: 20231208 Date Completed: 20240108 Latest Revision: 20240214
رمز التحديث: 20240215
مُعرف محوري في PubMed: PMC10769877
DOI: 10.1038/s41564-023-01523-7
PMID: 38066332
قاعدة البيانات: MEDLINE
الوصف
تدمد:2058-5276
DOI:10.1038/s41564-023-01523-7