دورية أكاديمية

Direct observation of cortactin protecting Arp2/3-actin filament branch junctions from GMF-mediated destabilization.

التفاصيل البيبلوغرافية
العنوان: Direct observation of cortactin protecting Arp2/3-actin filament branch junctions from GMF-mediated destabilization.
المؤلفون: McGuirk ER; Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA., Koundinya N; Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA., Nagarajan P; Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, PA 19104, USA., Padrick SB; Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, PA 19104, USA., Goode BL; Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA. Electronic address: goode@brandeis.edu.
المصدر: European journal of cell biology [Eur J Cell Biol] 2024 Mar; Vol. 103 (1), pp. 151378. Date of Electronic Publication: 2023 Dec 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Elsevier Country of Publication: Germany NLM ID: 7906240 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1618-1298 (Electronic) Linking ISSN: 01719335 NLM ISO Abbreviation: Eur J Cell Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Jena, Germany : Elsevier
Original Publication: Stuttgart : Wissenschaftliche Verlagsgesellschaft, <1979-1997>
مواضيع طبية MeSH: Glia Maturation Factor*/genetics , Glia Maturation Factor*/chemistry , Glia Maturation Factor*/metabolism , Cortactin*, Actins/metabolism ; Actin Cytoskeleton/metabolism ; Actin-Related Protein 2-3 Complex/metabolism
مستخلص: How cells tightly control the formation and turnover of branched actin filament arrays to drive cell motility, endocytosis, and other cellular processes is still not well understood. Here, we investigated the mechanistic relationship between two binding partners of the Arp2/3 complex, glia maturation factor (GMF) and cortactin. Individually, GMF and cortactin have opposite effects on the stability of actin filament branches, but it is unknown how they work in concert with each other to govern branch turnover. Using TIRF microscopy, we observe that GMF's branch destabilizing activities are potently blocked by cortactin (IC 50 = 1.3 nM) and that this inhibition requires direct interactions of cortactin with Arp2/3 complex. The simplest model that would explain these results is competition for binding Arp2/3 complex. However, we find that cortactin and GMF do not compete for free Arp2/3 complex in solution. Further, we use single molecule analysis to show that cortactin's on-rate (3 ×10 7 s -1 M -1 ) and off-rate (0.03 s -1 ) at branch junctions are minimally affected by excess GMF. Together, these results show that cortactin binds with high affinity to branch junctions, where it blocks the destabilizing effects of GMF, possibly by a mechanism that is allosteric in nature. In addition, the affinities we measure for cortactin at actin filament branch junctions (K d = 0.9 nM) and filament sides (K d = 206 nM) are approximately 20-fold stronger than previously reported. These observations contribute to an emerging view of molecular complexity in how Arp2/3 complex is regulated through the integration of multiple inputs.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 The Authors. Published by Elsevier GmbH.. All rights reserved.)
References: J Biol Chem. 1971 Aug 10;246(15):4866-71. (PMID: 4254541)
J Mol Biol. 1967 Dec 14;30(2):383-434. (PMID: 5586931)
Nat Commun. 2018 Jul 24;9(1):2895. (PMID: 30042427)
Sci Adv. 2020 Jun 5;6(23):. (PMID: 32917641)
FEBS Lett. 1995 Feb 27;360(2):111-4. (PMID: 7875313)
Cell. 2008 Sep 5;134(5):828-42. (PMID: 18775315)
Mol Cell. 2008 Nov 7;32(3):426-38. (PMID: 18995840)
Science. 2001 Sep 28;293(5539):2456-9. (PMID: 11533442)
PLoS One. 2007 May 02;2(5):e400. (PMID: 17476322)
Proc Natl Acad Sci U S A. 2003 May 27;100(11):6337-42. (PMID: 12743368)
EMBO J. 2023 May 2;42(9):e113008. (PMID: 36939020)
J Cell Biol. 2006 Dec 18;175(6):947-55. (PMID: 17178911)
Curr Biol. 2014 Nov 3;24(21):2533-40. (PMID: 25308079)
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37):. (PMID: 34507987)
J Mol Biol. 2017 Jan 20;429(2):237-248. (PMID: 27939292)
Nat Cell Biol. 2001 Jan;3(1):76-82. (PMID: 11146629)
Nat Cell Biol. 2011 Sep 02;13(9):1012-3; author reply 1013-4. (PMID: 21892140)
Mol Biol Cell. 2009 Jul;20(14):3209-23. (PMID: 19458196)
Trends Cell Biol. 2022 May;32(5):421-432. (PMID: 34836783)
Biophys J. 2005 Feb;88(2):1387-402. (PMID: 15556992)
Curr Opin Cell Biol. 2016 Oct;42:63-72. (PMID: 27164504)
J Biol Chem. 2014 Oct 17;289(42):28856-69. (PMID: 25160634)
Nat Struct Mol Biol. 2013 Sep;20(9):1062-8. (PMID: 23893131)
Cytoskeleton (Hoboken). 2015 Jul;72(7):349-61. (PMID: 26147656)
Methods Mol Biol. 2013;1046:231-50. (PMID: 23868592)
Nat Rev Mol Cell Biol. 2013 Jan;14(1):7-12. (PMID: 23212475)
Proc Natl Acad Sci U S A. 2022 May 31;119(22):e2202723119. (PMID: 35622886)
J Cell Biol. 1993 Mar;120(6):1417-26. (PMID: 7680654)
Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2206722119. (PMID: 36442092)
Nat Methods. 2012 Jun 28;9(7):676-82. (PMID: 22743772)
Exp Cell Res. 2013 Mar 10;319(5):707-17. (PMID: 23333559)
Elife. 2013 Sep 03;2:e01008. (PMID: 24015360)
Curr Biol. 2001 Mar 6;11(5):370-4. (PMID: 11267876)
Curr Biol. 2011 Sep 13;21(17):1460-9. (PMID: 21856159)
Nat Struct Mol Biol. 2024 Jan 24;:. (PMID: 38267598)
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13519-13528. (PMID: 32461373)
Curr Opin Cell Biol. 2023 Feb;80:102156. (PMID: 36868090)
Nat Commun. 2023 Oct 28;14(1):6894. (PMID: 37898612)
Trends Cell Biol. 2018 Sep;28(9):749-760. (PMID: 29779865)
J Cell Biol. 2015 Jun 22;209(6):803-12. (PMID: 26101216)
Nat Cell Biol. 2001 Mar;3(3):259-66. (PMID: 11231575)
J Biol Chem. 2018 Aug 24;293(34):13022-13032. (PMID: 29929984)
J Cell Biol. 2000 Oct 2;151(1):29-40. (PMID: 11018051)
J Cell Biol. 2001 Apr 30;153(3):627-34. (PMID: 11331312)
Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9810-5. (PMID: 24958883)
Circ Res. 2006 Aug 18;99(4):424-33. (PMID: 16873721)
Curr Biol. 2010 May 11;20(9):861-7. (PMID: 20362448)
Mol Cell. 2006 Oct 6;24(1):13-23. (PMID: 17018289)
Elife. 2019 Dec 19;8:. (PMID: 31855180)
Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2115129119. (PMID: 35858314)
Curr Biol. 2013 Jun 17;23(12):1037-45. (PMID: 23727094)
Nat Cell Biol. 2006 Aug;8(8):826-33. (PMID: 16862144)
Curr Biol. 2002 Aug 6;12(15):1270-8. (PMID: 12176354)
Elife. 2013 Sep 03;2:e00884. (PMID: 24015358)
J Biol Chem. 2013 Sep 6;288(36):25683-25688. (PMID: 23897816)
Biochemistry. 1984 Dec 18;23(26):6631-41. (PMID: 6543322)
Cytoskeleton (Hoboken). 2011 Nov;68(11):596-602. (PMID: 22002930)
Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2306165120. (PMID: 37549294)
Curr Biol. 2009 Apr 14;19(7):537-45. (PMID: 19362000)
J Biol Chem. 2003 Jul 11;278(28):26086-93. (PMID: 12732638)
معلومات مُعتمدة: R35 GM134895 United States GM NIGMS NIH HHS; T32 GM139798 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: Actin; Branch; Cortactin; GMF; Glia maturation factor; TIRF microscopy
المشرفين على المادة: 0 (Glia Maturation Factor)
0 (Cortactin)
0 (Actins)
0 (Actin-Related Protein 2-3 Complex)
تواريخ الأحداث: Date Created: 20231210 Date Completed: 20240129 Latest Revision: 20240302
رمز التحديث: 20240302
مُعرف محوري في PubMed: PMC10843626
DOI: 10.1016/j.ejcb.2023.151378
PMID: 38071835
قاعدة البيانات: MEDLINE
الوصف
تدمد:1618-1298
DOI:10.1016/j.ejcb.2023.151378