دورية أكاديمية

ROS production by mitochondria: function or dysfunction?

التفاصيل البيبلوغرافية
العنوان: ROS production by mitochondria: function or dysfunction?
المؤلفون: Palma FR; Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Northwestern University, Chicago, IL, USA., Gantner BN; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA., Sakiyama MJ; Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Northwestern University, Chicago, IL, USA., Kayzuka C; Department of Pharmacology, Ribeirao Preto College of Nursing, University of Sao Paulo, Sao Paulo, Brazil., Shukla S; Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India., Lacchini R; Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Sao Paulo, Brazil., Cunniff B; Department of Pathology and Laboratory Medicine, Larner School of Medicine, University of Vermont, Burlington, VT, USA., Bonini MG; Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Northwestern University, Chicago, IL, USA. Marcelo.bonini@northwestern.edu.
المصدر: Oncogene [Oncogene] 2024 Jan; Vol. 43 (5), pp. 295-303. Date of Electronic Publication: 2023 Dec 11.
نوع المنشور: Journal Article; Review; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 8711562 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5594 (Electronic) Linking ISSN: 09509232 NLM ISO Abbreviation: Oncogene Subsets: MEDLINE
أسماء مطبوعة: Publication: <2002->: Basingstoke : Nature Publishing Group
Original Publication: Basingstoke, Hampshire, UK : Scientific & Medical Division, MacMillan Press, c1987-
مواضيع طبية MeSH: Mitochondria*/metabolism , Oxidative Stress*, Humans ; Reactive Oxygen Species/metabolism ; Signal Transduction ; Adenosine Triphosphate/metabolism
مستخلص: In eukaryotic cells, ATP generation is generally viewed as the primary function of mitochondria under normoxic conditions. Reactive oxygen species (ROS), in contrast, are regarded as the by-products of respiration, and are widely associated with dysfunction and disease. Important signaling functions have been demonstrated for mitochondrial ROS in recent years. Still, their chemical reactivity and capacity to elicit oxidative damage have reinforced the idea that ROS are the products of dysfunctional mitochondria that accumulate during disease. Several studies support a different model, however, by showing that: (1) limited oxygen availability results in mitochondria prioritizing ROS production over ATP, (2) ROS is an essential adaptive mitochondrial signal triggered by various important stressors, and (3) while mitochondria-independent ATP production can be easily engaged by most cells, there is no known replacement for ROS-driven redox signaling. Based on these observations and other evidence reviewed here, we highlight the role of ROS production as a major mitochondrial function involved in cellular adaptation and stress resistance. As such, we propose a rekindled view of ROS production as a primary mitochondrial function as essential to life as ATP production itself.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Fabian M, Wong WW, Gennis RB, Palmer G. Mass spectrometric determination of dioxygen bond splitting in the “peroxy” intermediate of cytochrome c oxidase. Proc Natl Acad Sci USA. 1999;96:13114–7. (PMID: 105572822390910.1073/pnas.96.23.13114)
Babcock GT. How oxygen is activated and reduced in respiration. Proc Natl Acad Sci USA. 1999;96:12971–3. (PMID: 105572563393210.1073/pnas.96.23.12971)
Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59:527–605. (PMID: 3753210.1152/physrev.1979.59.3.527)
Jain M, Rivera S, Monclus EA, Synenki L, Zirk A, Eisenbart J, et al. Mitochondrial reactive oxygen species regulate transforming growth factor-beta signaling. J Biol Chem. 2013;288:770–7. (PMID: 2320452110.1074/jbc.M112.431973)
Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GR, et al. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol. 2007;177:1029–36. (PMID: 17562787206436310.1083/jcb.200609074)
Stepanova A, Konrad C, Manfredi G, Springett R, Ten V, Galkin A. The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A. J Neurochem. 2019;148:731–45. (PMID: 30582748708648410.1111/jnc.14654)
Roca FJ, Whitworth LJ, Prag HA, Murphy MP, Ramakrishnan L. Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport. Science. 2022;376:eabh2841. (PMID: 35737799761297410.1126/science.abh2841)
Grivennikova VG, Kareyeva AV, Vinogradov AD. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay. Redox Biol. 2018;17:192–9. (PMID: 29702406600717010.1016/j.redox.2018.04.014)
Scialo F, Sanz A. Coenzyme Q redox signalling and longevity. Free Radic Biol Med. 2021;164:187–205. (PMID: 3345037910.1016/j.freeradbiomed.2021.01.018)
Herrero D, Tome M, Canon S, Cruz FM, Carmona RM, Fuster E, et al. Redox-dependent BMI1 activity drives in vivo adult cardiac progenitor cell differentiation. Cell Death Differ. 2018;25:809–22. (PMID: 2932326510.1038/s41418-017-0022-2)
Chouchani ET, Kazak L, Spiegelman BM. Mitochondrial reactive oxygen species and adipose tissue thermogenesis: Bridging physiology and mechanisms. J Biol Chem. 2017;292:16810–6. (PMID: 28842500564186310.1074/jbc.R117.789628)
Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA. 1998;95:11715–20. (PMID: 97517312170610.1073/pnas.95.20.11715)
Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275:25130–8. (PMID: 1083351410.1074/jbc.M001914200)
Bastin J, Sroussi M, Nemazanyy I, Laurent-Puig P, Mouillet-Richard S, Djouadi F. Downregulation of mitochondrial complex I induces ROS production in colorectal cancer subtypes that differently controls migration. J Transl Med. 2023;21:522. (PMID: 375331021039891810.1186/s12967-023-04341-x)
Han L, Zhang C, Wang D, Zhang J, Tang Q, Li MJ, et al. Retrograde regulation of mitochondrial fission and epithelial to mesenchymal transition in hepatocellular carcinoma by GCN5L1. Oncogene. 2023;42:1024–37. (PMID: 3675957110.1038/s41388-023-02621-w)
Kinugasa H, Whelan KA, Tanaka K, Natsuizaka M, Long A, Guo A, et al. Mitochondrial SOD2 regulates epithelial-mesenchymal transition and cell populations defined by differential CD44 expression. Oncogene. 2015;34:5229–39. (PMID: 25659582453009610.1038/onc.2014.449)
Bazopoulou D, Knoefler D, Zheng Y, Ulrich K, Oleson BJ, Xie L, et al. Developmental ROS individualizes organismal stress resistance and lifespan. Nature. 2019;576:301–5. (PMID: 31801997703939910.1038/s41586-019-1814-y)
Palma FR, Ogata FT, Coelho DR, Pulakanti K, Meyer A, Huang Y et al. H3.1 Cys96 oxidation by mitochondrial ROS promotes chromatin remodeling, breast cancer progression to metastasis and multi-drug resistance. bioRxiv (2022). 2022.2012.2001.517361.
Baek Y, Woo TG, Ahn J, Lee D, Kwon Y, Park BJ, et al. Structural analysis of the overoxidized Cu/Zn-superoxide dismutase in ROS-induced ALS filament formation. Commun Biol. 2022;5:1085. (PMID: 36224351955653510.1038/s42003-022-04017-0)
Paviani V, Junqueira de Melo P, Avakin A, Di Mascio P, Ronsein GE, Augusto O. Human cataractous lenses contain cross-links produced by crystallin-derived tryptophanyl and tyrosyl radicals. Free Radic Biol Med. 2020;160:356–67. (PMID: 3285815810.1016/j.freeradbiomed.2020.08.020)
Godoy LC, Munoz-Pinedo C, Castro L, Cardaci S, Schonhoff CM, King M, et al. Disruption of the M80-Fe ligation stimulates the translocation of cytochrome c to the cytoplasm and nucleus in nonapoptotic cells. Proc Natl Acad Sci USA. 2009;106:2653–8. (PMID: 19196960265032110.1073/pnas.0809279106)
Connor KM, Subbaram S, Regan KJ, Nelson KK, Mazurkiewicz JE, Bartholomew PJ, et al. Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J Biol Chem. 2005;280:16916–24. (PMID: 1570164610.1074/jbc.M410690200)
Bonini MG, Siraki AG, Atanassov BS, Mason RP. Immunolocalization of hypochlorite-induced, catalase-bound free radical formation in mouse hepatocytes. Free Radic Biol Med. 2007;42:530–40. (PMID: 1727568510.1016/j.freeradbiomed.2006.11.019)
Rocco-Machado N, Lai L, Kim G, He Y, Luczak ED, Anderson ME, et al. Oxidative stress-induced autonomous activation of the calcium/calmodulin-dependent kinase II involves disulfide formation in the regulatory domain. J Biol Chem. 2022;298:102579. (PMID: 36220393964343810.1016/j.jbc.2022.102579)
Rass U, Ahel I, West SC. Defective DNA repair and neurodegenerative disease. Cell. 2007;130:991–1004. (PMID: 1788964510.1016/j.cell.2007.08.043)
Horwitz E, Krogvold L, Zhitomirsky S, Swisa A, Fischman M, Lax T, et al. beta-cell DNA damage response promotes islet inflammation in type 1diabetes. Diabetes. 2018;67:2305–18. (PMID: 30150306619833510.2337/db17-1006)
Aydin E, Hallner A, Grauers Wiktorin H, Staffas A, Hellstrand K, Martner A. NOX2 inhibition reduces oxidative stress and prolongs survival in murine KRAS-induced myeloproliferative disease. Oncogene. 2019;38:1534–43. (PMID: 3032331110.1038/s41388-018-0528-1)
Schroyer AL, Stimes NW, Abi Saab WF, Chadee DN. MLK3 phosphorylation by ERK1/2 is required for oxidative stress-induced invasion of colorectal cancer cells. Oncogene. 2018;37:1031–40. (PMID: 2908420910.1038/onc.2017.396)
Mangerich A, Knutson CG, Parry NM, Muthupalani S, Ye W, Prestwich E, et al. Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer. Proc Natl Acad Sci USA. 2012;109:E1820–9. (PMID: 22689960339085510.1073/pnas.1207829109)
McBride TJ, Schneider JE, Floyd RA, Loeb LA. Mutations induced by methylene blue plus light in single-stranded M13mp2. Proc Natl Acad Sci USA. 1992;89:6866–70. (PMID: 14959764960510.1073/pnas.89.15.6866)
Michaels ML, Cruz C, Grollman AP, Miller JH. Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc Natl Acad Sci USA. 1992;89:7022–5. (PMID: 14959964963710.1073/pnas.89.15.7022)
Tsuzuki T, Egashira A, Igarashi H, Iwakuma T, Nakatsuru Y, Tominaga Y, et al. Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Proc Natl Acad Sci USA. 2001;98:11456–61. (PMID: 115729925875110.1073/pnas.191086798)
Hyun JW, Choi JY, Zeng HH, Lee YS, Kim HS, Yoon SH, et al. Leukemic cell line, KG-1 has a functional loss of hOGG1 enzyme due to a point mutation and 8-hydroxydeoxyguanosine can kill KG-1. Oncogene. 2000;19:4476–9. (PMID: 1100242010.1038/sj.onc.1203787)
Trinei M, Giorgio M, Cicalese A, Barozzi S, Ventura A, Migliaccio E, et al. A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene. 2002;21:3872–8. (PMID: 1203282510.1038/sj.onc.1205513)
Shi H, Hudson LG, Liu KJ. Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radic Biol Med. 2004;37:582–93. (PMID: 1528811610.1016/j.freeradbiomed.2004.03.012)
Guo ZM, Yang H, Hamilton ML, VanRemmen H, Richardson A. Effects of age and food restriction on oxidative DNA damage and antioxidant enzyme activities in the mouse aorta. Mech Ageing Dev. 2001;122:1771–86. (PMID: 1155727910.1016/S0047-6374(01)00298-6)
Choudhury S, Huang AY, Kim J, Zhou Z, Morillo K, Maury EA, et al. Somatic mutations in single human cardiomyocytes reveal age-associated DNA damage and widespread oxidative genotoxicity. Nat Aging. 2022;2:714–25. (PMID: 36051457943280710.1038/s43587-022-00261-5)
Nakabeppu Y, Sakumi K, Sakamoto K, Tsuchimoto D, Tsuzuki T, Nakatsu Y. Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids. Biol Chem. 2006;387:373–9. (PMID: 1660633410.1515/BC.2006.050)
D’Errico M, Parlanti E, Dogliotti E. Mechanism of oxidative DNA damage repair and relevance to human pathology. Mutat Res. 2008;659:4–14. (PMID: 1808360910.1016/j.mrrev.2007.10.003)
Maynard S, Keijzers G, Hansen AM, Osler M, Molbo D, Bendix L, et al. Associations of subjective vitality with DNA damage, cardiovascular risk factors and physical performance. Acta Physiol (Oxf). 2015;213:156–70. (PMID: 2470349810.1111/apha.12296)
Vougioukalaki M, Demmers J, Vermeij WP, Baar M, Bruens S, Magaraki A, et al. Different responses to DNA damage determine ageing differences between organs. Aging Cell. 2022;21:e13562. (PMID: 35246937900912810.1111/acel.13562)
Garinis GA, van der Horst GT, Vijg J, Hoeijmakers JH. DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol. 2008;10:1241–7. (PMID: 18978832435170210.1038/ncb1108-1241)
Schumacher B, Garinis GA, Hoeijmakers JH. Age to survive: DNA damage and aging. Trends Genet. 2008;24:77–85. (PMID: 1819206510.1016/j.tig.2007.11.004)
Soest DMKV, Polderman PE, Toom WTFD, Zwakenberg S, Henau SD, Burgering BMT et al. Mitochondrial H2O2 release does not directly cause genomic DNA damage. bioRxiv (2023): 2023.2003.2029.534749.
Zhang J, Simpson CM, Berner J, Chong HB, Fang J, Ordulu Z, et al. Systematic identification of anticancer drug targets reveals a nucleus-to-mitochondria ROS-sensing pathway. Cell. 2023;186:2361–2379.e2325. (PMID: 3719261910.1016/j.cell.2023.04.026)
Desai R, East DA, Hardy L, Faccenda D, Rigon M, Crosby J. Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci Adv. 2020;6:eabc9955. (PMID: 3335512910.1126/sciadv.abc9955)
Fazeli G, Stopper H, Schinzel R, Ni CW, Jo H, Schupp N. Angiotensin II induces DNA damage via AT1 receptor and NADPH oxidase isoform Nox4. Mutagenesis. 2012;27:673–81. (PMID: 22844079628104710.1093/mutage/ges033)
Bhardwaj V, Gokulan RC, Horvat A, Yermalitskaya L, Korolkova O, Washington KM, et al. Activation of NADPH oxidases leads to DNA damage in esophageal cells. Sci Rep. 2017;7:9956. (PMID: 28855537557723310.1038/s41598-017-09620-4)
Forneris F, Binda C, Vanoni MA, Mattevi A, Battaglioli E. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 2005;579:2203–7. (PMID: 1581134210.1016/j.febslet.2005.03.015)
Hahm JY, Park J, Jang ES, Chi SW. 8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification. Exp Mol Med. 2022;54:1626–42. (PMID: 36266447963621310.1038/s12276-022-00822-z)
Perillo B, Ombra MN, Bertoni A, Cuozzo C, Sacchetti S, Sasso A, et al. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science. 2008;319:202–6. (PMID: 1818765510.1126/science.1147674)
Smith KA, Schumacker PT. Sensors and signals: the role of reactive oxygen species in hypoxic pulmonary vasoconstriction. J Physiol. 2019;597:1033–43. (PMID: 3009147610.1113/JP275852)
Kim JY, Kim JK, Kim H. ABCB7 simultaneously regulates apoptotic and non-apoptotic cell death by modulating mitochondrial ROS and HIF1alpha-driven NFkappaB signaling. Oncogene. 2020;39:1969–82. (PMID: 3177232710.1038/s41388-019-1118-6)
Ren T, Zhang H, Wang J, Zhu J, Jin M, Wu Y, et al. MCU-dependent mitochondrial Ca(2+) inhibits NAD(+)/SIRT3/SOD2 pathway to promote ROS production and metastasis of HCC cells. Oncogene. 2017;36:5897–909. (PMID: 2865046510.1038/onc.2017.167)
Hamanaka RB, Glasauer A, Hoover P, Yang S, Blatt H, Mullen AR, et al. Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci Signal. 2013;6:ra8. (PMID: 23386745401737610.1126/scisignal.2003638)
Palma FR, He C, Danes JM, Paviani V, Coelho DR, Gantner BN, et al. Mitochondrial superoxide dismutase: what the established, the intriguing, and the novel reveal about a key cellular redox switch. Antioxid Redox Signal. 2020;32:701–14. (PMID: 31968997704708110.1089/ars.2019.7962)
Hart PC, Mao M, de Abreu AL, Ansenberger-Fricano K, Ekoue DN, Ganini D, et al. MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. Nat Commun. 2015;6:6053. (PMID: 2565197510.1038/ncomms7053)
Simon MC. Mitochondrial reactive oxygen species are required for hypoxic HIF alpha stabilization. Adv Exp Med Biol. 2006;588:165–70. (PMID: 1708988810.1007/978-0-387-34817-9_15)
Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1:401–8. (PMID: 1605408910.1016/j.cmet.2005.05.001)
Emerling BM, Weinberg F, Snyder C, Burgess Z, Mutlu GM, Viollet B, et al. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med. 2009;46:1386–91. (PMID: 19268526332634610.1016/j.freeradbiomed.2009.02.019)
Zhao D, Yang J, Yang L. Insights for oxidative stress and mTOR signaling in myocardial ischemia/reperfusion injury under diabetes. Oxid Med Cell Longev. 2017;2017:6437467. (PMID: 28298952533735410.1155/2017/6437467)
Kim JH, Choi TG, Park S, Yun HR, Nguyen NNY, Jo YH, et al. Mitochondrial ROS-derived PTEN oxidation activates PI3K pathway for mTOR-induced myogenic autophagy. Cell Death Differ. 2018;25:1921–37. (PMID: 30042494621951110.1038/s41418-018-0165-9)
Wang Y, Zang QS, Liu Z, Wu Q, Maass D, Dulan G, et al. Regulation of VEGF-induced endothelial cell migration by mitochondrial reactive oxygen species. Am J Physiol Cell Physiol. 2011;301:C695–704. (PMID: 21653897317457010.1152/ajpcell.00322.2010)
Felty Q, Singh KP, Roy D. Estrogen-induced G1/S transition of G0-arrested estrogen-dependent breast cancer cells is regulated by mitochondrial oxidant signaling. Oncogene. 2005;24:4883–93. (PMID: 1589789910.1038/sj.onc.1208667)
Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 2017;66:789–800. (PMID: 28622524555356010.1016/j.molcel.2017.05.032)
Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA. 2004;101:3329–35. (PMID: 1498550537346110.1073/pnas.0308061100)
Carling D. AMPK signalling in health and disease. Curr Opin Cell Biol. 2017;45:31–7. (PMID: 2823217910.1016/j.ceb.2017.01.005)
Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27:299–313. (PMID: 2915340810.1016/j.cmet.2017.10.009)
Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12:9–22. (PMID: 22169972340191210.1038/nrc3183)
Safran M, Kaelin WG Jr. HIF hydroxylation and the mammalian oxygen-sensing pathway. J Clin Invest. 2003;111:779–83. (PMID: 1263998015377810.1172/JCI200318181)
Lin X, David CA, Donnelly JB, Michaelides M, Chandel NS, Huang X, et al. A chemical genomics screen highlights the essential role of mitochondria in HIF-1 regulation. Proc Natl Acad Sci USA. 2008;105:174–9. (PMID: 18172210222418110.1073/pnas.0706585104)
Sabharwal SS, Dudley VJ, Landwerlin C, Schumacker PT. H(2)O(2) transit through the mitochondrial intermembrane space promotes tumor cell growth in vitro and in vivo. J Biol Chem. 2023;299:104624. (PMID: 369350091012713910.1016/j.jbc.2023.104624)
Wang Y, Agarwal E, Bertolini I, Ghosh JC, Seo JH, Altieri DC. IDH2 reprograms mitochondrial dynamics in cancer through a HIF-1alpha-regulated pseudohypoxic state. FASEB J. 2019;33:13398–411. (PMID: 31530011689404310.1096/fj.201901366R)
Parekh A, Das S, Parida S, Das CK, Dutta D, Mallick SK, et al. Multi-nucleated cells use ROS to induce breast cancer chemo-resistance in vitro and in vivo. Oncogene. 2018;37:4546–61. (PMID: 2974359410.1038/s41388-018-0272-6)
Mylonis I, Kourti M, Samiotaki M, Panayotou G, Simos G. Mortalin-mediated and ERK-controlled targeting of HIF-1alpha to mitochondria confers resistance to apoptosis under hypoxia. J Cell Sci. 2017;130:466–79. (PMID: 27909249)
Flamant L, Notte A, Ninane N, Raes M, Michiels C. Anti-apoptotic role of HIF-1 and AP-1 in paclitaxel exposed breast cancer cells under hypoxia. Mol Cancer. 2010;9:191. (PMID: 20626868309800910.1186/1476-4598-9-191)
Rohwer N, Welzel M, Daskalow K, Pfander D, Wiedenmann B, Detjen K, et al. Hypoxia-inducible factor 1alpha mediates anoikis resistance via suppression of alpha5 integrin. Cancer Res. 2008;68:10113–20. (PMID: 1907487710.1158/0008-5472.CAN-08-1839)
Whately KM, Voronkova MA, Maskey A, Gandhi J, Loskutov J, Choi H, et al. Nuclear Aurora-A kinase-induced hypoxia signaling drives early dissemination and metastasis in breast cancer: implications for detection of metastatic tumors. Oncogene. 2021;40:5651–64. (PMID: 34326467951121210.1038/s41388-021-01969-1)
Casillas AL, Chauhan SS, Toth RK, Sainz AG, Clements AN, Jensen CC, et al. Direct phosphorylation and stabilization of HIF-1alpha by PIM1 kinase drives angiogenesis in solid tumors. Oncogene. 2021;40:5142–52. (PMID: 34211090836451610.1038/s41388-021-01915-1)
Guillen-Quispe YN, Kim SJ, Saeidi S, Zhou T, Zheng J, Kim SH, et al. Oxygen-independent stabilization of HIF-2alpha in breast cancer through direct interaction with peptidyl-prolyl cis-trans isomerase NIMA-interacting 1. Free Radic Biol Med. 2023;207:296–307. (PMID: 3747387410.1016/j.freeradbiomed.2023.07.020)
Zheng J, Kim SJ, Saeidi S, Kim SH, Fang X, Lee YH, et al. Overactivated NRF2 induces pseudohypoxia in hepatocellular carcinoma by stabilizing HIF-1alpha. Free Radic Biol Med. 2023;194:347–56. (PMID: 3646021510.1016/j.freeradbiomed.2022.11.039)
Jarman EJ, Ward C, Turnbull AK, Martinez-Perez C, Meehan J, Xintaropoulou C, et al. HER2 regulates HIF-2alpha and drives an increased hypoxic response in breast cancer. Breast Cancer Res. 2019;21:10. (PMID: 30670058634335810.1186/s13058-019-1097-0)
Zhang Y, Park J, Han SJ, Yang SY, Yoon HJ, Park I, et al. Redox regulation of tumor suppressor PTEN in cell signaling. Redox Biol. 2020;34:101553. (PMID: 32413744722688710.1016/j.redox.2020.101553)
Raman D, Pervaiz S. Redox inhibition of protein phosphatase PP2A: Potential implications in oncogenesis and its progression. Redox Biol. 2019;27:101105. (PMID: 30686777685956310.1016/j.redox.2019.101105)
Yamaguchi H, Wang HG. The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene. 2001;20:7779–86. (PMID: 1175365610.1038/sj.onc.1204984)
Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001;15:1406–18. (PMID: 1139036031270910.1101/gad.889901)
Kennedy SG, Kandel ES, Cross TK, Hay N. Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol. 1999;19:5800–10. (PMID: 104097668442910.1128/MCB.19.8.5800)
Datta SR, Ranger AM, Lin MZ, Sturgill JF, Ma YC, Cowan CW, et al. Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell. 2002;3:631–43. (PMID: 1243137110.1016/S1534-5807(02)00326-X)
Zhou H, Li XM, Meinkoth J, Pittman RN. Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol. 2000;151:483–94. (PMID: 11062251218558710.1083/jcb.151.3.483)
Zhang M, Zhang Q, Hu Y, Xu L, Jiang Y, Zhang C, et al. miR-181a increases FoxO1 acetylation and promotes granulosa cell apoptosis via SIRT1 downregulation. Cell Death Dis. 2017;8:e3088. (PMID: 28981116568058910.1038/cddis.2017.467)
Berra E, Diaz-Meco MT, Moscat J. The activation of p38 and apoptosis by the inhibition of Erk is antagonized by the phosphoinositide 3-kinase/Akt pathway. J Biol Chem. 1998;273:10792–7. (PMID: 955314610.1074/jbc.273.17.10792)
Cerezo A, Martinez AC, Lanzarot D, Fischer S, Franke TF, Rebollo A. Role of Akt and c-Jun N-terminal kinase 2 in apoptosis induced by interleukin-4 deprivation. Mol Biol Cell. 1998;9:3107–18. (PMID: 98029002559610.1091/mbc.9.11.3107)
Okubo Y, Blakesley VA, Stannard B, Gutkind S, Le Roith D. Insulin-like growth factor-I inhibits the stress-activated protein kinase/c-Jun N-terminal kinase. J Biol Chem. 1998;273:25961–6. (PMID: 974827310.1074/jbc.273.40.25961)
Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene. 2008;27:6245–51. (PMID: 18931691306329610.1038/onc.2008.301)
Leppa S, Bohmann D. Diverse functions of JNK signaling and c-Jun in stress response and apoptosis. Oncogene. 1999;18:6158–62. (PMID: 1055710710.1038/sj.onc.1203173)
Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23:2838–49. (PMID: 1507714710.1038/sj.onc.1207556)
Deacon K, Mistry P, Chernoff J, Blank JL, Patel R. p38 Mitogen-activated protein kinase mediates cell death and p21-activated kinase mediates cell survival during chemotherapeutic drug-induced mitotic arrest. Mol Biol Cell. 2003;14:2071–87. (PMID: 1280207616509810.1091/mbc.e02-10-0653)
Robey RB, Hay N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene. 2006;25:4683–96. (PMID: 1689208210.1038/sj.onc.1209595)
Benbrook DM, Masamha CP. The pro-survival function of Akt kinase can be overridden or altered to contribute to induction of apoptosis. Curr Cancer Drug Targets. 2011;11:586–99. (PMID: 2148622210.2174/156800911795655994)
Tang Y, Zhou H, Chen A, Pittman RN, Field J. The Akt proto-oncogene links Ras to Pak and cell survival signals. J Biol Chem. 2000;275:9106–9. (PMID: 1073404210.1074/jbc.275.13.9106)
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857–68. (PMID: 1010227310.1016/S0092-8674(00)80595-4)
Bhagatte Y, Lodwick D, Storey N, Mitochondrial ROS. production and subsequent ERK phosphorylation are necessary for temperature preconditioning of isolated ventricular myocytes. Cell Death Dis. 2012;3:e345. (PMID: 22764104340658310.1038/cddis.2012.84)
Park MA, Zhang G, Mitchell C, Rahmani M, Hamed H, Hagan MP, et al. Mitogen-activated protein kinase 1/2 inhibitors and 17-allylamino-17-demethoxygeldanamycin synergize to kill human gastrointestinal tumor cells in vitro via suppression of c-FLIP-s levels and activation of CD95. Mol Cancer Ther. 2008;7:2633–48. (PMID: 18790746258552210.1158/1535-7163.MCT-08-0400)
Cassano S, Agnese S, D’Amato V, Papale M, Garbi C, Castagnola P, et al. Reactive oxygen species, Ki-Ras, and mitochondrial superoxide dismutase cooperate in nerve growth factor-induced differentiation of PC12 cells. J Biol Chem. 2010;285:24141–53. (PMID: 20495008291127910.1074/jbc.M109.098525)
Balmanno K, Cook SJ. Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ. 2009;16:368–77. (PMID: 1884610910.1038/cdd.2008.148)
Lu Z, Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life. 2006;58:621–31. (PMID: 1708538110.1080/15216540600957438)
Ewings KE, Hadfield-Moorhouse K, Wiggins CM, Wickenden JA, Balmanno K, Gilley R, et al. ERK1/2-dependent phosphorylation of BimEL promotes its rapid dissociation from Mcl-1 and Bcl-xL. EMBO J. 2007;26:2856–67. (PMID: 17525735189476410.1038/sj.emboj.7601723)
Alvarez-Moya B, Lopez-Alcala C, Drosten M, Bachs O, Agell N. K-Ras4B phosphorylation at Ser181 is inhibited by calmodulin and modulates K-Ras activity and function. Oncogene. 2010;29:5911–22. (PMID: 2080252610.1038/onc.2010.298)
Agarwal S, Kazi JU, Mohlin S, Pahlman S, Ronnstrand L. The activation loop tyrosine 823 is essential for the transforming capacity of the c-Kit oncogenic mutant D816V. Oncogene. 2015;34:4581–90. (PMID: 2543536910.1038/onc.2014.383)
Leisner TM, Moran C, Holly SP, Parise LV. CIB1 prevents nuclear GAPDH accumulation and non-apoptotic tumor cell death via AKT and ERK signaling. Oncogene. 2013;32:4017–27. (PMID: 2296464110.1038/onc.2012.408)
Tsuji E, Tsuji Y, Fujiwara T, Ogata S, Tsukamoto K, Saku K. Splicing variant of Cdc42 interacting protein-4 disrupts beta-catenin-mediated cell-cell adhesion: expression and function in renal cell carcinoma. Biochem Biophys Res Commun. 2006;339:1083–8. (PMID: 1634343710.1016/j.bbrc.2005.11.117)
Oka S, Tsuzuki T, Hidaka M, Ohno M, Nakatsu Y, Sekiguchi M. Endogenous ROS production in early differentiation state suppresses endoderm differentiation via transient FOXC1 expression. Cell Death Discov. 2022;8:150. (PMID: 35365611897601310.1038/s41420-022-00961-2)
Tormos KV, Anso E, Hamanaka RB, Eisenbart J, Joseph J, Kalyanaraman B, et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 2011;14:537–44. (PMID: 21982713319016810.1016/j.cmet.2011.08.007)
Yin M, O’Neill LAJ. The role of the electron transport chain in immunity. FASEB J. 2021;35:e21974. (PMID: 3479360110.1096/fj.202101161R)
Lin YC, Lin YC, Tsai ML, Liao WT, Hung CH. TSLP regulates mitochondrial ROS-induced mitophagy via histone modification in human monocytes. Cell Biosci. 2022;12:32. (PMID: 35292112892505610.1186/s13578-022-00767-w)
Alshaabi H, Shannon N, Gravelle R, Milczarek S, Messier T, Cunniff B. Miro1-mediated mitochondrial positioning supports subcellular redox status. Redox Biol. 2021;38:101818. (PMID: 3334154410.1016/j.redox.2020.101818)
DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2:e1600200. (PMID: 27386546492888310.1126/sciadv.1600200)
Sishc BJ, Ding L, Nam TK, Heer CD, Rodman SN, Schoenfeld JD, et al. Avasopasem manganese synergizes with hypofractionated radiation to ablate tumors through the generation of hydrogen peroxide. Sci Transl Med. 2021;13:eabb3768. (PMID: 33980575831493610.1126/scitranslmed.abb3768)
Cheng G, Zhang Q, Pan J, Lee Y, Ouari O, Hardy M, et al. Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis. Nat Commun. 2019;10:2205. (PMID: 31101821652520110.1038/s41467-019-10042-1)
Cheng G, Hardy M, Kalyanaraman B. Antiproliferative effects of mitochondria-targeted N-acetylcysteine and analogs in cancer cells. Sci Rep. 2023;13:7254. (PMID: 371426681016011610.1038/s41598-023-34266-w)
معلومات مُعتمدة: R01ES028149 U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences (NIEHS); R56033398 U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences (NIEHS); R01HL163820 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI); R01CA216882 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
المشرفين على المادة: 0 (Reactive Oxygen Species)
8L70Q75FXE (Adenosine Triphosphate)
تواريخ الأحداث: Date Created: 20231211 Date Completed: 20240131 Latest Revision: 20240815
رمز التحديث: 20240816
DOI: 10.1038/s41388-023-02907-z
PMID: 38081963
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5594
DOI:10.1038/s41388-023-02907-z