دورية أكاديمية

Rapid Gastric emptying in spontaneously hypertensive rats.

التفاصيل البيبلوغرافية
العنوان: Rapid Gastric emptying in spontaneously hypertensive rats.
المؤلفون: Salman UA; Department of Radiology, UT Health San Antonio., Schwartz JG; Department of Pathology, Methodist Hospital., McMahan AC; Department of Pathology, UT Health San Antonio., Michalek JE; Department of Population Health Sciences, UT Health San Antonio, San Antonio, Texas, USA., Phillips WT; Department of Radiology, UT Health San Antonio.
المصدر: Journal of hypertension [J Hypertens] 2024 Mar 01; Vol. 42 (3), pp. 572-578. Date of Electronic Publication: 2023 Dec 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wolters Kluwer Health, Inc Country of Publication: Netherlands NLM ID: 8306882 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1473-5598 (Electronic) Linking ISSN: 02636352 NLM ISO Abbreviation: J Hypertens Subsets: MEDLINE
أسماء مطبوعة: Publication: [Alphen aan den Rijn, the Netherlands] : Wolters Kluwer Health, Inc.
Original Publication: London ; New York : Gower Academic Pub., [1983-
مواضيع طبية MeSH: Gastric Emptying* , Hypertension*, Rats ; Animals ; Humans ; Infant ; Rats, Inbred SHR ; Rats, Inbred WKY ; Glucose ; Blood Pressure/physiology
مستخلص: Objective: To assess the rate of gastric emptying in spontaneously hypertensive rats (SHR) and to evaluate rapid gastric emptying as a possible predisposing factor for hypertension. Rapid gastric emptying of carbohydrates, known to elevate postprandial serum glucose, has been reported to occur in many insulin-resistant states, including hypertension. SHR exhibit insulin resistance similar to human hypertensive patients. No prior studies have assessed gastric emptying of an oral glucose solution in SHR as compared with control Wistar Kyoto rats (WKY).
Methods: Using scintigraphic imaging, gastric emptying of a physiologic, orally consumed glucose solution was assessed in 12 SHR and 12 control WKY at 5 weeks of age, prior to the development of hypertension, and at 12 weeks of age after hypertension was fully established.
Results: At 5 weeks, the gastric half-emptying time (GHET) was 67.8 ± 9.8 min for the SHR vs. 109.3 ± 18 ( P  = 0.042) minutes for the WKY controls. At 12 weeks, the GHET was 37.29 ± 10.3 min for the SHR vs. 138.53 ± 37.6 ( P  = 0.016) min for the WKY controls.
Conclusion: Gastric emptying was significantly more rapid in the SHR before and after the development of hypertension. Even though SHR are known to have increased sympathetic activity associated with their development of hypertension, this increased sympathetic activity does not inhibit gastric emptying. SHR are a promising animal model for investigating therapeutic agents for treating hypertension aimed at slowing the rate of gastric emptying.
(Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.)
References: Ferrannini E, Cushman WC. Diabetes and hypertension: the bad companions. Lancet 2012; 380:601–610.
Oktay AA, Akturk HK, Jahangir E. Diabetes mellitus and hypertension: a dual threat. Curr Opin Cardiol 2016; 31:402–409.
Perano SJ, Rayner CK, Kritas S, Horowitz M, Donaghue K, Mpundu-Kaambwa C, et al. Gastric emptying is more rapid in adolescents with type 1 diabetes and impacts on postprandial glycemia. J Clin Endocrinol Metab 2015; 100:2248–2253.
Goyal RK, Cristofaro V, Sullivan MP. Rapid gastric emptying in diabetes mellitus: pathophysiology and clinical importance. J Diabetes Complications 2019; 33:107414.
Phillips WT, Schwartz JG, McMahan CA. Rapid gastric emptying in patients with early noninsulin-dependent diabetes mellitus. N Engl J Med 1991; 324:130–131.
Schwartz JG, McMahan CA, Green GM, Phillips WT. Gastric emptying in Mexican Americans compared to non-Hispanic whites. Dig Dis Sci 1995; 40:624–630.
Wright RA, Krinsky S, Fleeman C, Trujillo J, Teague E. Gastric emptying and obesity. Gastroenterology 1983; 84:747–751.
Tosetti C, Corinaldesi R, Stanghellini V, Pasquali R, Corbelli C, Zoccoli G, et al. Gastric emptying of solids in morbid obesity. Int J Obes Relat Metab Disord 1996; 20:200–205.
Wisén O, Hellström PM. Gastrointestinal motility in obesity. J Intern Med 1995; 237:411–418.
Green GM, Guan D, Schwartz JG, Phillips WT. Accelerated gastric emptying of glucose in Zucker type 2 diabetic rats: role in postprandial hyperglycaemia. Diabetologia 1997; 40:136–142.
Horowitz M, Edelbroek MA, Wishart JM, Straathof JW. Relationship between oral glucose tolerance and gastric emptying in normal healthy subjects. Diabetologia 1993; 36:857–862.
Jalleh RJ, Wu T, Jones KL, Rayner CK, Horowitz M, Marathe CS. Relationships of glucose, GLP-1, and insulin secretion with gastric emptying after a 75-g glucose load in type 2 diabetes. J Clin Endocrinol Metab 2022; 107:e3850–e3856.
Phillips WT, Salman UA, McMahan CA, Schwartz JG. Accelerated gastric emptying in hypertensive subjects. J Nucl Med 1997; 38:207–211.
Kolovou GD, Daskalova D, Iraklianou SA, Adamopoulou EN, Pilatis ND, Hatzigeorgiou GC, et al. Postprandial lipemia in hypertension. J Am Coll Nutr 2003; 22:80–87.
Singer P, Gödicke W, Voigt S, Hajdu I, Weiss M. Postprandial hyperinsulinemia in patients with mild essential hypertension. Hypertension 1985; 7:182–186.
Ceriello A. Targeting one-hour postmeal glucose: is it time for a paradigm switch in diabetes management? Diabetes Technol Ther 2017; 19:493–497.
Peter R, Okoseime OE, Rees A, Owens DR. Postprandial glucose – a potential therapeutic target to reduce cardiovascular mortality. Curr Vasc Pharmacol 2009; 7:68–74.
Hulman S, Falkner B, Chen YQ. Insulin resistance in the spontaneously hypertensive rat. Metabolism 1991; 40:359–361.
Mondon CE, Reaven GM. Evidence of abnormalities of insulin metabolism in rats with spontaneous hypertension. Metabolism 1988; 37:303–305.
Swislocki A, Tsuzuki A. Insulin resistance and hypertension: glucose intolerance, hyperinsulinemia, and elevated free fatty acids in the lean spontaneously hypertensive rat. Am J Med Sci 1993; 306:282–286.
McMenamin CA, Travagli RA, Browning KN. Inhibitory neurotransmission regulates vagal efferent activity and gastric motility. Exp Biol Med (Maywood) 2016; 241:1343–1350.
Judy WV, Watanabe AM, Henry DP, Besch HR Jr, Murphy WR, Hockel GM. Sympathetic nerve activity: role in regulation of blood pressure in the spontaenously hypertensive rat. Circ Res 1976; 38:21–29.
Dampney RA, Michelini LC, Li DP, Pan HL. Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. Am J Physiol Heart Circ Physiol 2018; 315:H1200–H1214.
Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res 2014; 114:1804–1814.
Esler M. The sympathetic nervous system in hypertension: back to the future? Curr Hypertens Rep 2015; 17:11.
Grassi G, Biffi A, Dell’Oro R, Quarti Trevano F, Seravalle G, Corrao G, et al. Sympathetic neural abnormalities in type 1 and type 2 diabetes: a systematic review and meta-analysis. J Hypertens 2020; 38:1436–1442.
Frank JW, Saslow SB, Camilleri M, Thomforde GM, Dinneen S, Rizza RA. Mechanism of accelerated gastric emptying of liquids and hyperglycemia in patients with type II diabetes mellitus. Gastroenterology 1995; 109:755–765.
Weytjens C, Keymeulen B, Van Haleweyn C, Somers G, Bossuyt A. Rapid gastric emptying of a liquid meal in long-term Type 2 diabetes mellitus. Diabet Med 1998; 15:1022–1027.
Xie C, Huang W, Wang X, Trahair LG, Pham HT, Marathe CS, et al. Gastric emptying in health and type 2 diabetes: an evaluation using a 75 g oral glucose drink. Diabetes Res Clin Pract 2021; 171:108610.
Schwartz JG, Green GM, Guan D, McMahan CA, Phillips WT. Rapid gastric emptying of a solid pancake meal in type II diabetic patients. Diabetes Care 1996; 19:468–471.
Sethi S, Augustine RA, Bouwer GT, Perkinson MR, Cheong I, Bussey CT, et al. Increased neuronal activation in sympathoregulatory regions of the brain and spinal cord in type 2 diabetic rats. J Neuroendocrinol 2021; 33:e13016.
Carlson SH, Shelton J, White CR, Wyss JM. Elevated sympathetic activity contributes to hypertension and salt sensitivity in diabetic obese Zucker rats. Hypertension 2000; 35:403–408.
Kalogeris TJ, Reidelberger RD, Mendel VE. Effect of nutrient density and composition of liquid meals on gastric emptying in feeding rats. Am J Physiol 1983; 244:R865–871.
Wallen WJ, Belanger MP, Wittnich C. Body weight and food intake profiles are modulated by sex hormones and tamoxifen in chronically hypertensive rats. J Nutr 2002; 132:2246–2250.
Hatanaka S, Kawarabayashi K, Iseri M, Tsubokura K, Furuhama K. Enhancing effect of DQ-2511 on gastric emptying of spontaneously hypertensive rats. Life Sci 1995; 56:Pl377–Pl382.
Oliveira KBV, Severo JS, Silva A, Santos B, Mendes PHM, Sabino JPJ, et al. P2X7 receptor antagonist improves gastrointestinal disorders in spontaneously hypertensive rats. Braz J Med Biol Res 2023; 56:e12569.
Rybnikova EA, Vetrovoi OV, Zenko MY. Comparative characterization of rat strains (Wistar, Wistar–Kyoto, Sprague Dawley, Long Evans, LT, SHR, BD-IX) by their behavior, hormonal level and antioxidant status. J Evol Biochem Physiol 2018; 54:374–382.
Boyko EJ, Barr EL, Zimmet PZ, Shaw JE. Two-hour glucose predicts the development of hypertension over 5 years: the AusDiab study. J Hum Hypertens 2008; 22:168–176.
Buchanan TA, Youn JH, Campese VM, Sipos GF. Enhanced glucose tolerance in spontaneously hypertensive rats. Pancreatic beta-cell hyperfunction with normal insulin sensitivity. Diabetes 1992; 41:872–878.
Petersen KM, Bogevig S, Holst JJ, Knop FK, Christensen MB. Hemodynamic effects of glucagon: a literature review. J Clin Endocrinol Metab 2018; 103:1804–1812.
Stanley S, Moheet A, Seaquist ER. Central mechanisms of glucose sensing and counterregulation in defense of hypoglycemia. Endocr Rev 2019; 40:768–788.
Fan SH, Xiong QF, Wang L, Zhang LH, Shi YW. Glucagon-like peptide 1 treatment reverses vascular remodelling by downregulating matrix metalloproteinase 1 expression through inhibition of the ERK1/2/NF-kappaB signalling pathway. Mol Cell Endocrinol 2020; 518:111005.
Li QX, Gao H, Guo YX, Wang BY, Hua RX, Gao L, et al. GLP-1 and underlying beneficial actions in Alzheimer's disease, hypertension, and NASH. Front Endocrinol (Lausanne) 2021; 12:721198.
Lovshin JA, Zinman B. Blood pressure-lowering effects of incretin-based diabetes therapies. Can J Diabetes 2014; 38:364–371.
Wang B, Zhong J, Lin H, Zhao Z, Yan Z, He H, et al. Blood pressure-lowering effects of GLP-1 receptor agonists exenatide and liraglutide: a meta-analysis of clinical trials. Diabetes Obes Metab 2013; 15:737–749.
Urva S, Coskun T, Loghin C, Cui X, Beebe E, O’Farrell L, et al. The novel dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (GLP-1) receptor agonist tirzepatide transiently delays gastric emptying similarly to selective long-acting GLP-1 receptor agonists. Diabetes Obes Metab 2020; 22:1886–1891.
Kanbay M, Copur S, Siriopol D, Yildiz AB, Gaipov A, van Raalte DH, et al. Effect of tirzepatide on blood pressure and lipids: a meta-analysis of randomized controlled trials. Diabetes Obes Metab 2023; 25:3766–3778.
Lingvay I, Mosenzon O, Brown K, Cui X, O’Neill C, Fernandez Lando L, et al. Systolic blood pressure reduction with tirzepatide in patients with type 2 diabetes: insights from SURPASS clinical program. Cardiovasc Diabetol 2023; 22:66.
المشرفين على المادة: IY9XDZ35W2 (Glucose)
تواريخ الأحداث: Date Created: 20231213 Date Completed: 20240201 Latest Revision: 20240201
رمز التحديث: 20240201
DOI: 10.1097/HJH.0000000000003640
PMID: 38088427
قاعدة البيانات: MEDLINE
الوصف
تدمد:1473-5598
DOI:10.1097/HJH.0000000000003640