دورية أكاديمية

Brain-wide correspondence of neuronal epigenomics and distant projections.

التفاصيل البيبلوغرافية
العنوان: Brain-wide correspondence of neuronal epigenomics and distant projections.
المؤلفون: Zhou J; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA., Zhang Z; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.; Department of Human Genetics, The University of Chicago, Chicago, IL, USA., Wu M; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.; Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA., Liu H; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Pang Y; Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA., Bartlett A; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Peng Z; School of Mathematics and Computer Science, Nanchang University, Nanchang, China.; Henan Engineering Research Center of Intelligent Technology and Application, Henan University, Kaifeng, China., Ding W; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Rivkin A; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Lagos WN; Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA., Williams E; Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Lee CT; Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA., Miyazaki PA; Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA., Aldridge A; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Zeng Q; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.; Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA., Salinda JLA; Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA., Claffey N; Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA., Liem M; Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA., Fitzpatrick C; Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA., Boggeman L; Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA., Yao Z; Allen Institute for Brain Science, Seattle, WA, USA., Smith KA; Allen Institute for Brain Science, Seattle, WA, USA., Tasic B; Allen Institute for Brain Science, Seattle, WA, USA., Altshul J; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Kenworthy MA; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Valadon C; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Nery JR; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Castanon RG; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Patne NS; Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA., Vu M; Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA., Rashid M; Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA., Jacobs M; Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA., Ito T; Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA., Osteen J; Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Emerson N; Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Lee J; Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Cho S; Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Rink J; Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Huang HH; Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Pinto-Duartec A; Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Dominguez B; Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA., Smith JB; Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., O'Connor C; Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA., Zeng H; Allen Institute for Brain Science, Seattle, WA, USA., Chen S; Henan Engineering Research Center of Intelligent Technology and Application, Henan University, Kaifeng, China.; School of Computer and Information Engineering, Henan University, Kaifeng, China., Lee KF; Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA., Mukamel EA; Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA., Jin X; Center for Motor Control and Disease, Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China.; NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China., Margarita Behrens M; Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA., Ecker JR; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA. ecker@salk.edu.; Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA. ecker@salk.edu., Callaway EM; Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA. callaway@salk.edu.; Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA. callaway@salk.edu.
المصدر: Nature [Nature] 2023 Dec; Vol. 624 (7991), pp. 355-365. Date of Electronic Publication: 2023 Dec 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Brain*/cytology , Brain*/metabolism , Epigenomics* , Neural Pathways*/cytology , Neurons*/metabolism, Animals ; Mice ; Amygdala ; Consensus Sequence ; Datasets as Topic ; Gene Expression Profiling ; Hypothalamus/cytology ; Mesencephalon/cytology ; Neurotransmitter Agents/metabolism ; Regulatory Sequences, Nucleic Acid ; Rhombencephalon/cytology ; Single-Cell Analysis ; Thalamus/cytology ; Transcription Factors/metabolism
مستخلص: Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures 1 . Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq 2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.
(© 2023. The Author(s).)
References: Armand, E. J., Li, J., Xie, F., Luo, C. & Mukamel, E. A. Single-cell sequencing of brain cell transcriptomes and epigenomes. Neuron 109, 11–26 (2021). (PMID: 10.1016/j.neuron.2020.12.010334120937808568)
Zhang, Z. et al. Epigenomic diversity of cortical projection neurons in the mouse brain. Nature 598, 167–173 (2021). (PMID: 10.1038/s41586-021-03223-w346160658494636)
Chen, X. et al. High-throughput mapping of long-range neuronal projection using in situ sequencing. Cell 179, 772–786 (2019). (PMID: 10.1016/j.cell.2019.09.023316267747836778)
Sun, Y.-C. et al. Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. Nat. Neurosci. 24, 873–885 (2021). (PMID: 10.1038/s41593-021-00842-4339728018178227)
Economo, M. N. et al. Distinct descending motor cortex pathways and their roles in movement. Nature 563, 79–84 (2018). (PMID: 10.1038/s41586-018-0642-930382200)
Kim, E. J. et al. Extraction of distinct neuronal cell types from within a genetically continuous population. Neuron 107, 274–282 (2020). (PMID: 10.1016/j.neuron.2020.04.018323968527381365)
Kim, D.-W. et al. Multimodal analysis of cell types in a hypothalamic node controlling social behavior. Cell 179, 713–728 (2019). (PMID: 10.1016/j.cell.2019.09.020316267717534821)
Phillips, J. W. et al. A repeated molecular architecture across thalamic pathways. Nat. Neurosci. 22, 1925–1935 (2019). (PMID: 10.1038/s41593-019-0483-3315278036819258)
Mo, A. et al. Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86, 1369–1384 (2015). (PMID: 10.1016/j.neuron.2015.05.018260871644499463)
Luo, C. et al. Single nucleus multi-omics identifies human cortical cell regulatory genome diversity. Cell Genomics 2, 100107 (2022). (PMID: 10.1016/j.xgen.2022.100107354195519004682)
Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013). (PMID: 10.1126/science.1237905238288903785061)
Tervo, D. G. R. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016). (PMID: 10.1016/j.neuron.2016.09.021277204865872824)
Wang, Q. et al. The Allen Mouse Brain Common Coordinate Framework: a 3D reference atlas. Cell 181, 936–953 (2020). (PMID: 10.1016/j.cell.2020.04.007323865448152789)
Luo, C. et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 357, 600–604 (2017). (PMID: 10.1126/science.aan3351287981325570439)
Luo, C. et al. Robust single-cell DNA methylome profiling with snmC-seq2. Nat. Commun. 9, 3824 (2018). (PMID: 10.1038/s41467-018-06355-2302374496147798)
Tian, W. et al. Single-cell DNA methylation and 3D genome architecture in the human brain. Science 382, eadf5357 (2023).
Liu, H. et al. Single-cell DNA methylome and 3D multi-omic atlas of the adult mouse brain. Nature https://doi.org/10.1038/s41586-023-06805-y (2023).
Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature https://doi.org/10.1038/s41586-023-06812-z (2023).
Zhang, M. et al. Molecularly defined and spatially resolved cell atlas of the whole mouse brain. Nature https://doi.org/10.1038/s41586-023-06808-9 (2023).
Benevento, M., Hökfelt, T. & Harkany, T. Ontogenetic rules for the molecular diversification of hypothalamic neurons. Nat. Rev. Neurosci. 23, 611–627 (2022). (PMID: 10.1038/s41583-022-00615-335906427)
Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018). (PMID: 10.1126/science.aau5324303854646482113)
Usrey, W. M. & Sherman, S. M. (Oxford Univ. Press, 2021).
Sripanidkulchai, K. & Wyss, J. M. Thalamic projections to retrosplenial cortex in the rat. J. Comp. Neurol. 254, 143–165 (1986). (PMID: 10.1002/cne.9025402023794004)
Vitalis, T. et al. RORα coordinates thalamic and cortical maturation to instruct barrel cortex development. Cereb. Cortex 28, 3994–4007 (2018). (PMID: 10.1093/cercor/bhx26229040410)
Carcea, I. et al. Maturation of cortical circuits requires Semaphorin 7 A. Proc. Natl Acad. Sci. USA 111, 13978–13983 (2014). (PMID: 10.1073/pnas.1408680111252019754183324)
Bosse, A. et al. Identification of the vertebrate Iroquois homeobox gene family with overlapping expression during early development of the nervous system. Mech. Dev. 69, 169–181 (1997). (PMID: 10.1016/S0925-4773(97)00165-29486539)
Zander, J.-F. et al. Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses. J. Neurosci. 30, 7634–7645 (2010). (PMID: 10.1523/JNEUROSCI.0141-10.2010205195386632366)
Kramer, S. G., Kidd, T., Simpson, J. H. & Goodman, C. S. Switching repulsion to attraction: changing responses to slit during transition in mesoderm migration. Science 292, 737–740 (2001). (PMID: 10.1126/science.105876611326102)
Hohenester, E., Hussain, S. & Howitt, J. A. Interaction of the guidance molecule Slit with cellular receptors. Biochem. Soc. Trans. 34, 418–421 (2006). (PMID: 10.1042/BST034041816709176)
Farghaian, H. et al. Scapinin-induced inhibition of axon elongation is attenuated by phosphorylation and translocation to the cytoplasm. J. Biol. Chem. 286, 19724–19734 (2011). (PMID: 10.1074/jbc.M110.205781214870133103351)
Miyata, T. et al. Neuron-enriched phosphatase and actin regulator 3 (Phactr3)/nuclear scaffold-associated PP1-inhibiting protein (Scapinin) regulates dendritic morphology via its protein phosphatase 1-binding domain. Biochem. Biophys. Res. Commun. 528, 322–329 (2020). (PMID: 10.1016/j.bbrc.2020.05.00632423795)
Trudeau, L.-E. et al. The multilingual nature of dopamine neurons. Prog. Brain Res. 211, 141–164 (2014). (PMID: 10.1016/B978-0-444-63425-2.00006-4249687794565795)
Bouarab, C., Thompson, B. & Polter, A. M. VTA GABA neurons at the interface of stress and reward. Front. Neural Circuits 13, 78 (2019). (PMID: 10.3389/fncir.2019.00078318668356906177)
Cai, J. & Tong, Q. Anatomy and function of ventral tegmental area glutamate neurons. Front. Neural Circuits 16, 867053 (2022). (PMID: 10.3389/fncir.2022.867053356694549164627)
Phillips, R. A. 3rd et al. An atlas of transcriptionally defined cell populations in the rat ventral tegmental area. Cell Rep. 39, 110616 (2022). (PMID: 10.1016/j.celrep.2022.11061635385745)
Yamaguchi, T., Sheen, W. & Morales, M. Glutamatergic neurons are present in the rat ventral tegmental area. Eur. J. Neurosci. 25, 106–118 (2007). (PMID: 10.1111/j.1460-9568.2006.05263.x172412723209508)
Yamaguchi, T., Wang, H.-L., Li, X., Ng, T. H. & Morales, M. Mesocorticolimbic glutamatergic pathway. J. Neurosci. 31, 8476–8490 (2011). (PMID: 10.1523/JNEUROSCI.1598-11.2011216538526623324)
Lacar, B. et al. Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat. Commun. 7, 11022 (2016). (PMID: 10.1038/ncomms11022270909464838832)
Liu, H. et al. DNA methylation atlas of the mouse brain at single-cell resolution. Nature 598, 120–128 (2021). (PMID: 10.1038/s41586-020-03182-8346160618494641)
Miles, A. et al. zarr-developers/zarr-python: v2.5.0. Zenodo https://doi.org/10.5281/zenodo.4069231 (2020).
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019). (PMID: 10.1016/j.cell.2019.05.031311781186687398)
Smith, S. J. et al. Single-cell transcriptomic evidence for dense intracortical neuropeptide networks. Elife 8, e47889 (2019). (PMID: 10.7554/eLife.47889317102876881117)
Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016). (PMID: 10.1038/nn.4216267275484985242)
González-Blas, C. B. et al. SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Nat. Methods 20, 1355–1367 (2023).
Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L. & Noble, W. S. Quantifying similarity between motifs. Genome Biol. 8, R24 (2007). (PMID: 10.1186/gb-2007-8-2-r24173242711852410)
Frith, M. C., Li, M. C. & Weng, Z. Cluster-Buster: finding dense clusters of motifs in DNA sequences. Nucleic Acids Res. 31, 3666–3668 (2003). (PMID: 10.1093/nar/gkg54012824389168947)
معلومات مُعتمدة: R01 EY022577 United States EY NEI NIH HHS; U01 AG076805 United States AG NIA NIH HHS; R01 AG082151 United States AG NIA NIH HHS; R24 AG073205 United States AG NIA NIH HHS; S10 OD023689 United States OD NIH HHS; U19 MH114831 United States MH NIMH NIH HHS; U19 MH114830 United States MH NIMH NIH HHS
المشرفين على المادة: 0 (Neurotransmitter Agents)
0 (Transcription Factors)
تواريخ الأحداث: Date Created: 20231213 Date Completed: 20231222 Latest Revision: 20240514
رمز التحديث: 20240514
مُعرف محوري في PubMed: PMC10719087
DOI: 10.1038/s41586-023-06823-w
PMID: 38092919
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-023-06823-w