دورية أكاديمية

Quantum spin nematic phase in a square-lattice iridate.

التفاصيل البيبلوغرافية
العنوان: Quantum spin nematic phase in a square-lattice iridate.
المؤلفون: Kim H; Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, South Korea.; Department of Physics, Pohang University of Science and Technology, Pohang, South Korea., Kim JK; Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, South Korea.; Department of Physics, Pohang University of Science and Technology, Pohang, South Korea., Kwon J; Department of Physics, Pohang University of Science and Technology, Pohang, South Korea., Kim J; Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, South Korea.; Department of Physics, Pohang University of Science and Technology, Pohang, South Korea., Kim HJ; Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, South Korea.; Department of Physics, Pohang University of Science and Technology, Pohang, South Korea., Ha S; Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, South Korea.; Department of Physics, Pohang University of Science and Technology, Pohang, South Korea., Kim K; Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, South Korea.; Department of Physics, Pohang University of Science and Technology, Pohang, South Korea., Lee W; Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, South Korea.; Department of Physics, Pohang University of Science and Technology, Pohang, South Korea., Kim J; Center for Van der Waals Quantum Solids, Institute for Basic Science, Pohang, Korea.; Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea., Cho GY; Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, South Korea.; Department of Physics, Pohang University of Science and Technology, Pohang, South Korea., Heo H; Department of Physics and Astronomy, Seoul National University, Seoul, South Korea., Jang J; Department of Physics and Astronomy, Seoul National University, Seoul, South Korea., Sahle CJ; ESRF, The European Synchrotron, Grenoble, France., Longo A; ESRF, The European Synchrotron, Grenoble, France.; Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, UOS Palermo, Palermo, Italy., Strempfer J; Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA., Fabbris G; Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA., Choi Y; Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA., Haskel D; Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA., Kim J; Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA., Kim J-; Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA., Kim BJ; Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, South Korea. bjkim6@postech.ac.kr.; Department of Physics, Pohang University of Science and Technology, Pohang, South Korea. bjkim6@postech.ac.kr.
المصدر: Nature [Nature] 2024 Jan; Vol. 625 (7994), pp. 264-269. Date of Electronic Publication: 2023 Dec 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Cold Temperature* , Liquid Crystals*, Phase Transition ; Superconductivity ; X-Ray Diffraction
مستخلص: Spin nematic is a magnetic analogue of classical liquid crystals, a fourth state of matter exhibiting characteristics of both liquid and solid 1,2 . Particularly intriguing is a valence-bond spin nematic 3-5 , in which spins are quantum entangled to form a multipolar order without breaking time-reversal symmetry, but its unambiguous experimental realization remains elusive. Here we establish a spin nematic phase in the square-lattice iridate Sr 2 IrO 4 , which approximately realizes a pseudospin one-half Heisenberg antiferromagnet in the strong spin-orbit coupling limit 6-9 . Upon cooling, the transition into the spin nematic phase at T C  ≈ 263 K is marked by a divergence in the static spin quadrupole susceptibility extracted from our Raman spectra and concomitant emergence of a collective mode associated with the spontaneous breaking of rotational symmetries. The quadrupolar order persists in the antiferromagnetic phase below T N  ≈ 230 K and becomes directly observable through its interference with the antiferromagnetic order in resonant X-ray diffraction, which allows us to uniquely determine its spatial structure. Further, we find using resonant inelastic X-ray scattering a complete breakdown of coherent magnon excitations at short-wavelength scales, suggesting a many-body quantum entanglement in the antiferromagnetic state 10,11 . Taken together, our results reveal a quantum order underlying the Néel antiferromagnet that is widely believed to be intimately connected to the mechanism of high-temperature superconductivity 12,13 .
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Blume, M. & Hsieh, Y. Y. Biquadratic exchange and quadrupolar ordering. J. Appl. Phys. 40, 1249–1249 (1969). (PMID: 10.1063/1.1657616)
Andreev, A. F. & Grishchuk, I. A. Spin nematics. Sov. Phys. JETP 60, 267–271 (1984).
Läuchli, A., Domenge, J. C., Lhuillier, C., Sindzingre, P. & Troyer, M. Two-step restoration of SU(2) symmetry in a frustrated ring-exchange magnet. Phys. Rev. Lett. 95, 137206 (2005). (PMID: 1619717310.1103/PhysRevLett.95.137206)
Shannon, N., Momoi, T. & Sindzingre, P. Nematic order in square lattice frustrated ferromagnets. Phys. Rev. Lett. 96, 027213 (2006). (PMID: 1648663410.1103/PhysRevLett.96.027213)
Sato, M., Hikihara, T. & Momoi, T. Spin-nematic and spin-density-wave orders in spatially anisotropic frustrated magnets in a magnetic field. Phys. Rev. Lett. 110, 077206 (2013). (PMID: 2516640310.1103/PhysRevLett.110.077206)
Kim, B. J. et al. Novel J eff  = 1/2 Mott state induced by relativistic spin-orbit coupling in Sr 2 IrO 4 . Phys. Rev. Lett. 101, 076402 (2008). (PMID: 1876456010.1103/PhysRevLett.101.076402)
Kim, B. J. et al. Phase-sensitive observation of a spin-orbital mott state in Sr 2 IrO 4 . Science 323, 1329–1332 (2009). (PMID: 1926501710.1126/science.1167106)
Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009). (PMID: 1925723710.1103/PhysRevLett.102.017205)
Bertinshaw, J., Kim, Y. K., Khaliullin, G. & Kim, B. J. Square lattice iridates. Annu. Rev. Condens. Matter Phys. 10, 315–336 (2019). (PMID: 10.1146/annurev-conmatphys-031218-013113)
Dalla Piazza, B. et al. Fractional excitations in the square-lattice quantum antiferromagnet. Nat. Phys. 11, 62–68 (2015). (PMID: 2572940010.1038/nphys3172)
Shao, H. et al. Nearly deconfined spinon excitations in the square-lattice spin-1/2 Heisenberg antiferromagnet. Phys. Rev. X 7, 041072 (2017).
Anderson, P. W. The resonating valence bond state in La 2 CuO 4 and superconductivity. Science 235, 1196–1198 (1987). (PMID: 1781897910.1126/science.235.4793.1196)
Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006). (PMID: 10.1103/RevModPhys.78.17)
Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012). (PMID: 10.1103/RevModPhys.84.1383)
Vaknin, D. et al. Antiferromagnetism in La 2 CuO 4−y . Phys. Rev. Lett. 58, 2802–2805 (1987). (PMID: 1003485310.1103/PhysRevLett.58.2802)
Singh, R. R. P. Thermodynamic parameters of the T = 0, spin-1/2 square-lattice Heisenberg antiferromagnet. Phys. Rev. B 39, 9760–9763 (1989). (PMID: 10.1103/PhysRevB.39.9760)
Smerald, A. & Shannon, N. Theory of spin excitations in a quantum spin-nematic state. Phys. Rev. B 88, 184430 (2013). (PMID: 10.1103/PhysRevB.88.184430)
Savary, L. & Senthil, T. Probing hidden orders with resonant inelastic X-ray scattering. Preprint at arxiv.org/abs/1506.04752 (2015).
Kohama, Y. et al. Possible observation of quantum spin-nematic phase in a frustrated magnet. Proc. Natl Acad. Sci. USA 116, 10686–10690 (2019). (PMID: 31072923656120310.1073/pnas.1821969116)
Orlova, A. et al. Nuclear magnetic resonance signature of the spin-nematic phase in LiCuVO 4 at high magnetic fields. Phys. Rev. Lett. 118, 247201 (2017). (PMID: 2866563410.1103/PhysRevLett.118.247201)
Ye, F. et al. Magnetic and crystal structures of Sr 2 IrO 4 : a neutron diffraction study. Phys. Rev. B 87, 140406 (2013). (PMID: 10.1103/PhysRevB.87.140406)
Porras, J. et al. Pseudospin-lattice coupling in the spin-orbit Mott insulator Sr 2 IrO 4 . Phys. Rev. B 99, 085125 (2019). (PMID: 10.1103/PhysRevB.99.085125)
Cetin, M. F. et al. Crossover from coherent to incoherent scattering in spin-orbit dominated Sr 2 IrO 4 . Phys. Rev. B 85, 195148 (2012). (PMID: 10.1103/PhysRevB.85.195148)
Gim, Y. et al. Isotropic and anisotropic regimes of the field-dependent spin dynamics in Sr 2 IrO 4 : Raman scattering studies. Phys. Rev. B 93, 024405 (2016). (PMID: 10.1103/PhysRevB.93.024405)
Gretarsson, H. et al. Two-magnon Raman scattering and pseudospin-lattice interactions in Sr 2 IrO 4 and Sr 3 Ir 2 O 7 . Phys. Rev. Lett. 116, 136401 (2016). (PMID: 2708199310.1103/PhysRevLett.116.136401)
Aeppli, G. et al. Magnetic dynamics of La 2 CuO 4 and La 2−x Ba x CuO 4 . Phys. Rev. Lett. 62, 2052–2055 (1989). (PMID: 1003984410.1103/PhysRevLett.62.2052)
Christensen, N. B. et al. Quantum dynamics and entanglement of spins on a square lattice. Proc. Natl Acad. Sci. USA 104, 15264–15269 (2007). (PMID: 17884986200052710.1073/pnas.0703293104)
Headings, N. S., Hayden, S. M., Coldea, R. & Perring, T. G. Anomalous high-energy spin excitations in the high-T c superconductor-parent antiferromagnet La 2 CuO 4 . Phys. Rev. Lett. 105, 247001 (2010). (PMID: 2123155310.1103/PhysRevLett.105.247001)
Martinelli, L. et al. Fractional spin excitations in the infinite-layer cuprate CaCuO 2 . Phys. Rev. X 12, 021041 (2022).
Tsyrulin, N. et al. Quantum effects in a weakly frustrated S = 1/2 two-dimensional Heisenberg antiferromagnet in an applied magnetic field. Phys. Rev. Lett. 102, 197201 (2009). (PMID: 1951899110.1103/PhysRevLett.102.197201)
Powalski, M., Schmidt, K. P. & Uhrig, G. S. Mutually attracting spin waves in the square-lattice quantum antiferromagnet. SciPost Phys. 4, 001 (2018). (PMID: 10.21468/SciPostPhys.4.1.001)
Chen, H. H. & Levy, P. M. Quadrupole phase transitions in magnetic solids. Phys. Rev. Lett. 27, 1383–1385 (1971). (PMID: 10.1103/PhysRevLett.27.1383)
Chandra, P. & Coleman, P. Quantum spin nematics: moment-free magnetism. Phys. Rev. Lett. 66, 100–103 (1991). (PMID: 1004315210.1103/PhysRevLett.66.100)
Läuchli, A., Mila, F. & Penc, K. Quadrupolar phases of the S = 1 bilinear-biquadratic Heisenberg model on the triangular lattice. Phys. Rev. Lett. 97, 087205 (2006). (PMID: 1702633010.1103/PhysRevLett.97.087205)
Hikihara, T., Kecke, L., Momoi, T. & Furusaki, A. Vector chiral and multipolar orders in the spin-[Formula: see text] frustrated ferromagnetic chain in magnetic field. Phys. Rev. B 78, 144404 (2008). (PMID: 10.1103/PhysRevB.78.144404)
Ueda, H. T. & Totsuka, K. Magnon bose-einstein condensation and various phases of three-dimensonal quantum helimagnets under high magnetic field. Phys. Rev. B 80, 014417 (2009). (PMID: 10.1103/PhysRevB.80.014417)
Zhitomirsky, M. E. & Tsunetsugu, H. Magnon pairing in quantum spin nematic. EPL 92, 37001 (2010). (PMID: 10.1209/0295-5075/92/37001)
Kim, J. et al. Magnetic excitation spectra of Sr 2 IrO 4 probed by resonant inelastic X-ray scattering: establishing links to cuprate superconductors. Phys. Rev. Lett. 108, 177003 (2012). (PMID: 2268089510.1103/PhysRevLett.108.177003)
Mourigal, M. et al. Evidence of a bond-nematic phase in LiCuVO 4 . Phys. Rev. Lett. 109, 027203 (2012). (PMID: 2303020310.1103/PhysRevLett.109.027203)
Seyler, K. L. et al. Spin-orbit-enhanced magnetic surface second-harmonic generation in Sr 2 IrO 4 . Phys. Rev. B 102, 201113 (2020). (PMID: 10.1103/PhysRevB.102.201113)
Jeong, J., Sidis, Y., Louat, A., Brouet, V. & Bourges, P. Time-reversal symmetry breaking hidden order in Sr 2 (Ir,Rh)O 4 . Nat. Commun. 8, 15119 (2017). (PMID: 28436436541397110.1038/ncomms15119)
Murayama, H. et al. Bond directional anapole order in a spin-orbit coupled Mott insulator Sr 2 (Ir 1−x Rh x )O 4 . Phys. Rev. X 11, 011021 (2021).
Kim, J. et al. Single crystal growth of iridates without platinum impurities. Phys. Rev. Mater. 6, 103401 (2022). (PMID: 10.1103/PhysRevMaterials.6.103401)
Torchinsky, D. et al. Structural distortion-induced magnetoelastic locking in Sr 2 IrO 4 revealed through nonlinear optical harmonic generation. Phys. Rev. Lett. 114, 096404 (2015). (PMID: 2579383410.1103/PhysRevLett.114.096404)
Zhu, X. D., Ullah, R. & Taufour, V. Oblique-incidence Sagnac interferometric scanning microscope for studying magneto-optic effects of materials at low temperatures. Rev. Sci. Instrum. 92, 043706 (2021). (PMID: 3424336510.1063/5.0042574)
Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997). (PMID: 10.1103/PhysRevB.55.14554)
Zhao, L. et al. Evidence of an odd-parity hidden order in a spin-orbit coupled correlated iridate. Nat. Phys. 12, 32–36 (2016). (PMID: 10.1038/nphys3517)
تواريخ الأحداث: Date Created: 20231213 Date Completed: 20240112 Latest Revision: 20240112
رمز التحديث: 20240112
DOI: 10.1038/s41586-023-06829-4
PMID: 38093009
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-023-06829-4