دورية أكاديمية

The Role of Osteogenic Effect and Vascular Function in Bone Health in Hypertensive Rats: A Study of Anti-hypertensive and Hemorheologic Drugs.

التفاصيل البيبلوغرافية
العنوان: The Role of Osteogenic Effect and Vascular Function in Bone Health in Hypertensive Rats: A Study of Anti-hypertensive and Hemorheologic Drugs.
المؤلفون: Pal S; Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India., Sharma S; Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India., Porwal K; Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India., Tiwari MC; Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India., Khan YA; Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India., Kumar S; Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India., Kumar N; Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India., Chattopadhyay N; Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India. n_chattopadhyay@cdri.res.in.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. n_chattopadhyay@cdri.res.in.; Division of Endocrinology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226 031, India. n_chattopadhyay@cdri.res.in.
المصدر: Calcified tissue international [Calcif Tissue Int] 2024 Mar; Vol. 114 (3), pp. 295-309. Date of Electronic Publication: 2023 Dec 15.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: United States NLM ID: 7905481 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0827 (Electronic) Linking ISSN: 0171967X NLM ISO Abbreviation: Calcif Tissue Int Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Springer Verlag
Original Publication: Berlin, New York, Springer International.
مواضيع طبية MeSH: Hypertension*/drug therapy , Pentoxifylline*/pharmacology, Humans ; Rats ; Female ; Animals ; Antihypertensive Agents/pharmacology ; Antihypertensive Agents/therapeutic use ; Bone Density ; Timolol/pharmacology ; Timolol/therapeutic use ; Rats, Inbred SHR ; Hydralazine/pharmacology ; Hydralazine/therapeutic use ; Blood Pressure
مستخلص: Vascular dysfunction contributes to the development of osteopenia in hypertensive patients, as decreased blood supply to bones results in tissue damage and dysfunction. The effect of anti-hypertensive medicines on bone mass in hypertensive individuals is inconclusive because of the varied mechanism of their action, and suggests that reducing blood pressure (BP) alone is insufficient to enhance bone mass in hypertension. Pentoxifylline (PTX), a hemorheological drug, improves blood flow by reducing blood viscosity and angiogenesis, also has an osteogenic effect. We hypothesized that improving vascular function is critical to increasing bone mass in hypertension. To test this, we screened various anti-hypertensive drugs for their in vitro osteogenic effect, from which timolol and hydralazine were selected. In adult female spontaneously hypertensive rats (SHRs), timolol and hydralazine did not improve vascular function and bone mass, but PTX improved both. In female SHR animals, PTX restored bone mass, strength and mineralization, up to the level of normotensive control rats. In addition, we observed lower blood vasculature in the femur of adult SHR animals, and PTX restored them. PTX also restored the bone vascular and angiogenesis parameters that had been impaired in OVX SHR compared to sham SHR. This study demonstrates the importance of vascular function in addition to increased bone mass for improving bone health as achieved by PTX without affecting BP, and suggests a promising treatment option for osteoporosis in hypertensive patients, particularly at-risk postmenopausal women.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Pérez-Castrillón JL, Martín-Escudero JC, Alvarez Manzanares P et al (2005) Hypertension as a risk factor for hip fracture [2]. Am J Hypertens 18:146–147. (PMID: 10.1016/j.amjhyper.2004.08.01615691630)
Ye Z, Lu H, Liu P (2017) Association between essential hypertension and bone mineral density: a systematic review and meta-analysis. Oncotarget 8:68916–68927. https://doi.org/10.18632/oncotarget.20325. (PMID: 10.18632/oncotarget.20325289781675620307)
Zhang R, Yin H, Yang M et al (2023) Advanced progress of the relationship between antihypertensive drugs and bone metabolism. Hypertension 80(11):2255–2264. https://doi.org/10.1161/hypertensionaha.123.21648. (PMID: 10.1161/hypertensionaha.123.2164837675564)
Afghani A, Johnson CA (2006) Resting blood pressure and bone mineral content are inversely related in overweight and obese hispanic women. Am J Hypertens 19:286–292. https://doi.org/10.1016/j.amjhyper.2005.10.024. (PMID: 10.1016/j.amjhyper.2005.10.02416500515)
Canoy D, Harvey NC, Prieto-Alhambra D et al (2022) Elevated blood pressure, antihypertensive medications and bone health in the population: revisiting old hypotheses and exploring future research directions. Osteoporos Int 33:315–326. https://doi.org/10.1007/s00198-021-06190-0. (PMID: 10.1007/s00198-021-06190-034642814)
Lerman LO, Kurtz TW, Touyz RM et al (2019) Animal models of hypertension: a scientific statement from the American Heart Association. Hypertension 73:e87–e120. https://doi.org/10.1161/HYP.0000000000000090. (PMID: 10.1161/HYP.000000000000009030866654)
Louis WJ, Howes LG (1990) Genealogy of the spontaneously hypertensive rat and wistar-kyoto rat strains: implications for studies of inherited hypertension. J Cardiovasc Pharmacol 16:S1–S5. https://doi.org/10.1097/00005344-199006167-00002. (PMID: 10.1097/00005344-199006167-000021708002)
Hawlitschek C, Brendel J, Gabriel P et al (2022) Antihypertensive and cardioprotective effects of different monotherapies and combination therapies in young spontaneously hypertensive rats—A pilot study: antihypertensive and cardioprotective effects of different monotherapies and combination therapies. Saudi J Biol Sci 29:339–345. https://doi.org/10.1016/j.sjbs.2021.08.093. (PMID: 10.1016/j.sjbs.2021.08.09335002427)
Bastos MF, Brilhante FV, Bezerra JP et al (2010) Trabecular bone area and bone healing in spontaneously hypertensive rats. A histometric study. Braz Oral Res 24:170–176. https://doi.org/10.1590/S1806-83242010000200008. (PMID: 10.1590/S1806-8324201000020000820658035)
Kang KY, Kang Y, Kim M et al (2013) The effects of antihypertensive Drugs on bone mineral density in ovariectomized mice. J Korean Med Sci 28:1139–1144. https://doi.org/10.3346/jkms.2013.28.8.1139. (PMID: 10.3346/jkms.2013.28.8.1139239604393744700)
Sato T, Arai M, Goto S, Togari A (2010) Effects of propranolol on bone metabolism in spontaneously hypertensive rats. J Pharmacol Exp Ther 334:99–105. https://doi.org/10.1124/jpet.110.167643. (PMID: 10.1124/jpet.110.16764320404011)
Shimizu H, Nakagami H, Yasumasa N et al (2012) Cilnidipine, but not amlodipine, ameliorates osteoporosis in ovariectomized hypertensive rats through inhibition of the N-type calcium channel. Hypertens Res 35:77–81. https://doi.org/10.1038/hr.2011.143. (PMID: 10.1038/hr.2011.14321881574)
Castoldi G, Carletti R, Ippolito S et al (2022) Angiotensin II modulates calcium/phosphate excretion in experimental model of hypertension: focus on bone. Biomedicines 10(11):2928. https://doi.org/10.3390/biomedicines10112928. (PMID: 10.3390/biomedicines10112928364284959687632)
Zhang YF, Wang YXJ, Griffith JF et al (2009) Proximal femur bone marrow blood perfusion indices are reduced in hypertensive rats: a dynamic contrast-enhanced MRI study. J Magn Reson Imaging 30:1139–1144. https://doi.org/10.1002/jmri.21954. (PMID: 10.1002/jmri.2195419780185)
Ha JS, Cho HM, Lee HJ, Kim S, Do (2019) Bilateral avascular necrosis of the femoral head in a patient with asymptomatic adrenal incidentaloma. Hip Pelvis 31:120–123. https://doi.org/10.5371/hp.2019.31.2.120. (PMID: 10.5371/hp.2019.31.2.120311987796546673)
Hong N, Du XK (2004) Avascular necrosis of bone in severe acute respiratory syndrome. Clin Radiol 59:602–608. https://doi.org/10.1016/j.crad.2003.12.008. (PMID: 10.1016/j.crad.2003.12.008152080667124301)
Tsai H-L, Chang J-W, Lu J-H, Liu C-S (2022) Epidemiology and risk factors associated with avascular necrosis in patients with autoimmune Diseases: a nationwide study. Korean J Intern Med 37:864–876. https://doi.org/10.3904/kjim.2020.098. (PMID: 10.3904/kjim.2020.098352360149271726)
Benigni A, Cassis P, Remuzzi G (2010) Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med 2:247–257. (PMID: 10.1002/emmm.201000080205971043377325)
Sparks MA, Crowley SD, Gurley SB et al (2014) Classical renin-angiotensin system in kidney physiology. Compr Physiol 4:1201–1228. https://doi.org/10.1002/cphy.c130040. (PMID: 10.1002/cphy.c130040249440354137912)
Ames MK, Atkins CE, Pitt B (2019) The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med 33:363–382. (PMID: 10.1111/jvim.15454308064966430926)
McCarty MF, O’Keefe JH, DiNicolantonio JJ (2016) Pentoxifylline for vascular health: a brief review of the literature. Open Hear 3:e000365. https://doi.org/10.1136/openhrt-2015-000365. (PMID: 10.1136/openhrt-2015-000365)
Ohshima N, Sato M (1981) Effect of pentoxifylline on microvascular blood flow velocity. Angiology 32:752–763. https://doi.org/10.1177/000331978103201103. (PMID: 10.1177/0003319781032011037325410)
Pal S, Porwal K, Singh H et al (2019) Reversal of osteopenia in ovariectomized rats by pentoxifylline: evidence of osteogenic and osteo-angiogenic roles of the drug. Calcif Tissue Int 105:294–307. https://doi.org/10.1007/s00223-019-00567-4. (PMID: 10.1007/s00223-019-00567-431175387)
Zaydun G, Tomiyama H, Hashimoto H et al (2006) Menopause is an Independent factor augmenting the age-related increase in arterial stiffness in the early postmenopausal phase. Atherosclerosis 184:137–142. https://doi.org/10.1016/j.atherosclerosis.2005.03.043. (PMID: 10.1016/j.atherosclerosis.2005.03.04315913634)
Mercuro G, Zoncu S, Saiu F et al (2004) Menopause induced by oophorectomy reveals a role of ovarian estrogen on the maintenance of pressure homeostasis. Maturitas 47:131–138. https://doi.org/10.1016/S0378-5122(03)00252-4. (PMID: 10.1016/S0378-5122(03)00252-414757272)
Sherwood A, Park SB, Hughes JW et al (2010) Cardiovascular hemodynamics during stress in premenopausal versus postmenopausal women. Menopause 17:403–409. https://doi.org/10.1097/gme.0b013e3181b9b061. (PMID: 10.1097/gme.0b013e3181b9b061197707803635083)
Trivedi S, Srivastava K, Gupta A et al (2020) A quantitative method to determine osteogenic differentiation aptness of scaffold. J Oral Biol Craniofacial Res 10:158–160. https://doi.org/10.1016/j.jobcr.2020.04.006. (PMID: 10.1016/j.jobcr.2020.04.006)
Pal S, Rashid M, Singh SK et al (2020) Skeletal restoration by phosphodiesterase 5 inhibitors in osteopenic mice: evidence of osteoanabolic and osteoangiogenic effects of the drugs. Bone 135:115305. https://doi.org/10.1016/j.bone.2020.115305. (PMID: 10.1016/j.bone.2020.11530532126313)
Sharma S, Porwal K, Kulkarni C et al (2022) Diosmin, a citrus fruit-derived phlebotonic bioflavonoid protects rats from chronic kidney disease-induced loss of bone mass and strength without deteriorating the renal function. Food Funct 13:2184–2199. https://doi.org/10.1039/d1fo03867b. (PMID: 10.1039/d1fo03867b35119062)
Porwal K, Pal S, Tewari D et al (2019) Increased bone marrow-specific adipogenesis by clofazimine causes impaired fracture healing, osteopenia, and osteonecrosis without extraskeletal effects in rats. Toxicol Sci 172:167–180. https://doi.org/10.1093/toxsci/kfz172. (PMID: 10.1093/toxsci/kfz17231393584)
Lima R, Wofford M, Reckelhoff JF (2012) Hypertension in postmenopausal women. Curr Hypertens Rep 14:254–260. https://doi.org/10.1007/s11906-012-0260-0. (PMID: 10.1007/s11906-012-0260-0224270703391725)
Ji M, Yu Q (2015) Primary osteoporosis in postmenopausal women. Chronic Dis Transl Med 1:9–13. https://doi.org/10.1016/j.cdtm.2015.02.006. (PMID: 10.1016/j.cdtm.2015.02.006290629815643776)
Noirrit-Esclassan E, Valera M-C, Tremollieres F et al (2021) Critical role of estrogens on bone homeostasis in both male and female: from physiology to medical implications. Int J Mol Sci 22:1568. https://doi.org/10.3390/ijms22041568. (PMID: 10.3390/ijms220415687913980)
Khosla S, Oursler MJ, Monroe DG (2012) Estrogen and the skeleton. Trends Endocrinol Metab 23:576–581. (PMID: 10.1016/j.tem.2012.03.008225955503424385)
Manolagas SC, O’Brien CA, Almeida M (2013) The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol 9:699–712. (PMID: 10.1038/nrendo.2013.179240423283971652)
Wang J, Gao Y, Cheng P et al (2017) CD31hiEmcnhi vessels support new trabecular bone formation at the frontier growth area in the bone defect repair process. Sci Rep 7(1):4990. https://doi.org/10.1038/s41598-017-04150-5. (PMID: 10.1038/s41598-017-04150-5286944805504063)
Han S, Oh M, Yoon S et al (2017) Risk stratification for avascular necrosis of the femoral head after internal fixation of femoral neck fractures by post-operative bone SPECT/CT. Nucl Med Mol Imaging 51:49–57. https://doi.org/10.1007/s13139-016-0443-8. (PMID: 10.1007/s13139-016-0443-828250858)
Steffen RT, Athanasou NA, Gill HS, Murray DW (2010) Avascular necrosis associated with fracture of the femoral neck after hip resurfacing: histological assessment of femoral bone from retrieval specimens. J Bone Jt Surg - Ser B 92:787–793. https://doi.org/10.1302/0301-620X.92B6.23377. (PMID: 10.1302/0301-620X.92B6.23377)
Matthews AH, Stitson D (2020) Osteonecrosis (Avascular Necrosis). StatPearls Publishing, Florida.
Lee TC, Burghardt AJ, Yao W et al (2014) Improved trabecular bone structure of 20-month-old male spontaneously hypertensive rats. Calcif Tissue Int 95:282–291. https://doi.org/10.1007/s00223-014-9893-0. (PMID: 10.1007/s00223-014-9893-0251068734153466)
Pinto YM, Paul M, Ganten D (1998) Lessons from rat models of hypertension: from goldblatt to genetic engineering. Cardiovasc Res 39:77–88. (PMID: 10.1016/S0008-6363(98)00077-79764191)
Lowenthal DT, Hobbs D, Affrime MB et al (1980) Prazosin kinetics and effectiveness in renal failure. Clin Pharmacol Ther 27:779–783. https://doi.org/10.1038/clpt.1980.110. (PMID: 10.1038/clpt.1980.1107379445)
Fourtillan JB, Courtois P, Lefebvre MA, Girault J (1981) Pharmacokinetics of oral timolol studied by mass fragmentography. Eur J Clin Pharmacol 19:193–196. https://doi.org/10.1007/BF00561948. (PMID: 10.1007/BF005619487215417)
Jee WS, Yao W (2001) Overview: animal models of osteopenia and osteoporosis. J Musculoskelet Neuronal Interact 1:193–207. (PMID: 15758493)
Liu XL, Li CL, Lu WW et al (2015) Skeletal site-specific response to ovariectomy in a rat model: change in bone density and microarchitecture. Clin Oral Implants Res 26:392–398. https://doi.org/10.1111/clr.12360. (PMID: 10.1111/clr.1236024593016)
Yousefzadeh N, Kashfi K, Jeddi S, Ghasemi A (2020) Ovariectomized rat model of osteoporosis: a practical guide. EXCLI J 19:89–107. (PMID: 320381197003643)
Tiyasatkulkovit W, Promruk W, Rojviriya C et al (2019) Impairment of bone microstructure and upregulation of osteoclastogenic markers in spontaneously hypertensive rats. Sci Rep 9(1):12293. https://doi.org/10.1038/s41598-019-48797-8. (PMID: 10.1038/s41598-019-48797-8314443746707260)
Ribatti D, D’Amati A (2023) Bone angiocrine factors. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2023.1244372 . 11:. (PMID: 10.3389/fcell.2023.12443723760110910435078)
Oinonen L, Tikkakoski A, Koskela J et al (2021) Parathyroid hormone may play a role in the pathophysiology of primary hypertension. Endocr Connect 10:54–65. https://doi.org/10.1530/EC-20-0446. (PMID: 10.1530/EC-20-044633289696)
Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14:13–18. (PMID: 10.1007/s00198-002-1345-4)
Ammann P, Rizzoli R, Meyer JM, Bonjour JP (1996) Bone density and shape as determinants of bone strength in IGF-I and/or pamidronate-treated ovariectomized rats. Osteoporos Int 6:219–227. https://doi.org/10.1007/BF01622738. (PMID: 10.1007/BF016227388783296)
Hart NH, Nimphius S, Rantalainen T et al (2017) Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact 17:114–139. (PMID: 288604145601257)
فهرسة مساهمة: Keywords: Bone formation; Bone vasculature; Osteogenic; Pentoxifylline; Spontaneously hypertensive rats (SHR)
المشرفين على المادة: 0 (Antihypertensive Agents)
817W3C6175 (Timolol)
SD6QCT3TSU (Pentoxifylline)
26NAK24LS8 (Hydralazine)
تواريخ الأحداث: Date Created: 20231215 Date Completed: 20240229 Latest Revision: 20240709
رمز التحديث: 20240709
DOI: 10.1007/s00223-023-01170-4
PMID: 38102510
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0827
DOI:10.1007/s00223-023-01170-4