دورية أكاديمية

The Soft Nanodots as Fluorescent Probes for Cell Imaging: Analysis of Cell and Spheroid Penetration Behavior of Single Chain Polymer Dots.

التفاصيل البيبلوغرافية
العنوان: The Soft Nanodots as Fluorescent Probes for Cell Imaging: Analysis of Cell and Spheroid Penetration Behavior of Single Chain Polymer Dots.
المؤلفون: Yucel M; Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany.; Department of Bioengineering, Izmir Institute of Technology, İzmir, 35430, Turkey., Onbas R; Department of Bioengineering, Izmir Institute of Technology, İzmir, 35430, Turkey., Arslan Yildiz A; Department of Bioengineering, Izmir Institute of Technology, İzmir, 35430, Turkey., Yildiz UH; Department of Chemistry, Izmir Institute of Technology, İzmir, 35430, Turkey.; Department of Polymer Science and Engineering, Izmir Institute of Technology, İzmir, 35430, Turkey.
المصدر: Macromolecular bioscience [Macromol Biosci] 2024 Apr; Vol. 24 (4), pp. e2300402. Date of Electronic Publication: 2024 Jan 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101135941 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1616-5195 (Electronic) Linking ISSN: 16165187 NLM ISO Abbreviation: Macromol Biosci Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH, c2001-
مواضيع طبية MeSH: Fluorescent Dyes* , Quantum Dots*, Semiconductors ; Polymers ; Polyelectrolytes ; Solvents
مستخلص: This study describes the formation, size control, and penetration behavior of polymer nanodots (Pdots) consisting of single or few chain polythiophene-based conjugated polyelectrolytes (CPEs) via nanophase separation between good solvent and poor solvent of CPE. Though the chain singularity may be associated with dilution nanophase separation suggests that molecules of a good solvent create a thermodynamically driven solvation layer surrounding the CPEs and thereby separating the single chains even in their poor solvents. This statement is therefore corroborated with emission intensity/lifetime, particle size, and scattering intensity of polyelectrolyte in good and poor solvents. Regarding the augmented features, Pdots are implemented into cell imaging studies to understand the nuclear penetration and to differentiate the invasive characteristics of breast cancer cells. The python based red, green, blue (RGB) color analysis   depicts that Pdots have more nuclear penetration ability in triple negative breast cancer cells due to the different nuclear morphology in shape and composition and Pdots have penetrated cell membrane as well as extracellular matrix in spheroid models. The current Pdot protocol and its utilization in cancer cell imaging are holding great promise for gene/drug delivery to target cancer cells by explicitly achieving the very first priority of nuclear intake.
(© 2024 Wiley‐VCH GmbH.)
References: U. H. Yildiz, P. Alagappan, B. Liedberg, Anal. Chem. 2013, 85, 820.
D. Rajwar, G. Ammanath, J. A. Cheema, A. Palaniappan, U. H. Yildiz, B. Liedberg, ACS Appl. Mater. Interfaces 2016, 8, 8349.
G. Ammanath, S. Yeasmin, Y. Srinivasulu, M. Vats, J. A. Cheema, F. Nabilah, R. Srivastava, U. H. Yildiz, P. Alagappan, B. Liedberg, Anal. Chim. Acta 2019, 1066, 102.
U. H. Yildiz, H.‐P. M. De Hoog, Z. Fu, N. Tomczak, A. N. Parikh, M. Nallani, B. Liedberg, Small 2014, 10, 442.
M. Yucel, A. Koc, A. Ulgenalp, G. D. Akkoc, M. Ceyhan, U. H. Yildiz, ACS Sens 2021, 6, 950.
D. Tuncel, H. V. Demir, Nanoscale 2010, 2, 484.
F. Ye, W. Sun, Y. Zhang, C. Wu, X. Zhang, J. Yu, Y. Rong, M. Zhang, D. T. Chiu, Langmuir 2015, 31, 499.
H.‐A. Ho, M. Boissinot, M. G. Bergeron, G. Corbeil, K. Doré, D. Boudreau, M. Leclerc, Angew. Chem., Int. Ed. 2002, 114, 1618.
S. Y. Ong, C. Zhang, X. Dong, S. Q. Yao, Angew. Chem., Int. Ed. 2021, 60, 17797.
G. Jin, R. He, Q. Liu, Y. Dong, M. Lin, W. Li, F. Xu, ACS Appl. Mater. Interfaces 2018, 10, 10634.
F. Ye, C. Wu, Y. Jin, M. Wang, Y.‐H. Chan, J. Yu, W. Sun, S. Hayden, D. T. Chiu, Chem. Commun. 2012, 48, 1778.
A. J. Anderson, E. Grey, N. J. Bongiardina, C. N. Bowman, S. J. Bryant, Biomacromolecules 2021, 22, 1127.
Y. Yang, J. Chen, Y. Yang, Z. Xie, L. Song, P. Zhang, C. Liu, J. Liu, Nanoscale 2019, 11, 7754.
L. E. Ibarra, S. Camorani, L. Agnello, E. Pedone, L. Pirone, C. A. Chesta, R. E. Palacios, M. Fedele, L. Cerchia, Pharmaceutics 2022, 14, 626.
R. Zhou, M. Zhang, J. He, J. Liu, X. Sun, P. Ni, ACS Omega 2022, 7, 21325.
H. Zhang, Y. Liang, H. Zhao, R. Qi, Z. Chen, H. Yuan, H. Liang, L. Wang, Macromol. Biosci. 2019, 20, 1900301.
I. Charlebois, C. Gravel, N. Arrad, M. Boissinot, M. G. Bergeron, M. Leclerc, Macromol. Biosci. 2013, 13, 717.
Z. Hashim, P. Howes, M. Green, J. Mater. Chem. 2011, 21, 1797.
K. Landfester, R. Montenegro, U. Scherf, R. Güntner, U. Asawapirom, S. Patil, D. Neher, T. Kietzke, Adv. Mater. 2002, 14, 651.
C. Wu, C. Szymanski, J. Mcneill, Langmuir 2006, 22, 2956.
C. Wu, C. Szymanski, Z. Cain, J. Mcneill, J. Am. Chem. Soc. 2007, 129, 12904.
A. Musyanovych, J. Schmitz‐Wienke, V. Mailänder, P. Walther, K. Landfester, Macromol. Biosci. 2008, 8, 127.
L. R. Macfarlane, H. Shaikh, J. D. Garcia‐Hernandez, M. Vespa, T. Fukui, I. Manners, Nat. Rev. Mater. 2021, 6, 7.
W.‐K. Tsai, Y.‐H. Chan, J. Chin. Chem. Soc. 2019, 66, 9.
S. Özenler, M. Yucel, Ö. Tüncel, H. Kaya, S. Özçelik, U. H. Yildiz, Anal. Chem. 2019, 91, 10357.
M. Rubinstein, R. H. Colby, Polymer Physics, Oxford University Press, New York Oxford 2003.
W. Hu, Polymer Physics; A Molecular Approach, Springer, Vienna 2013.
P. J. Flory, S. Fisk, J. Chem. Phys. 1966, 44, 2243.
P. J. Flory, J. Chem. Phys. 1949, 17, 303.
T. A. Orofino, P. J. Flory, J. Chem. Phys. 1957, 26, 1067.
P. J. Flory, J. Chem. Phys. 1945, 13, 453.
P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca 1953.
L. P. Fernando, P. K. Kandel, J. Yu, J. Mcneill, P. C. Ackroyd, K. A. Christensen, Biomacromolecules 2010, 11, 2675.
J. Liu, G. Feng, D. Ding, B. Liu, Polym. Chem. 2013, 4, 4326.
L. Feng, J. Zhu, Z. Wang, ACS Appl. Mater. Interfaces 2016, 8, 19364.
C. Dai, D. Yang, W. Zhang, B. Bao, Y. Cheng, L. Wang, Polym. Chem. 2015, 6, 3962.
T. Senthilkumar, F. Lv, H. Zhao, L. Liu, S. Wang, ACS Appl. Bio. Mater. 2019, 2, 6012.
R. Vivek, R. Thangam, V. Nipunbabu, C. Rejeeth, S. Sivasubramanian, P. Gunasekaran, K. Muthuchelian, S. Kannan, ACS Appl. Mater. Interfaces 2014, 6, 6469.
C. J. Bishop, K. L. Kozielski, J. J. Green, J. Controlled Release 2015, 219, 488.
C. R. Tate, L. V. Rhodes, H. C. Segar, J. L. Driver, F. N. Pounder, M. E. Burow, B. M. Collins‐Burow, Breast Cancer Res. 2012, 14, R79.
W. D. Foulkes, I. E. Smith, J. S. Reis‐Filho, N. Engl. J. Med. 2010, 363, 1938.
M. Kandula, K. K. Ch, A. R. Ys, World J. Oncol. 2013, 4, 137.
D. S. E. Seah, I. V. Luis, E. Macrae, J. Sohl, G. Litsas, E. P. Winer, N. U. Lin, H. J. Burstein, J. Natl. Compr. Canc. Netw. 2014, 12, 71.
R. Chiotaki, H. Polioudaki, P. A. Theodoropoulos, Biochem. Cell Biol. 2014, 92, 287.
R. A. Foty, J. Vis. Exp. 2011, 51, e2720.
T. Eder, T. Stangl, M. Gmelch, K. Remmerssen, D. Laux, S. Höger, J. M. Lupton, J. Vogelsang, Nat. Commun. 2017, 8, 1641.
W. Schärtl, Light Scattering from Polymer Solutions and Nanoparticle Dispersions, Springer, Berlin 2007.
E. Kibris, N. N. Barbak, N. E. Irmak, J. Mol. Model. 2021, 27, 34.
M. I. Maremonti, V. Panzetta, D. Dannhauser, P. A. Netti, F. Causa, J. R. Soc. Interface 2022, 19, 20210880.
K. Skok, L. Gradisnik, H. Celesnik, M. Milojevic, U. Potocnik, G. Jezernik, M. Gorenjak, M. Sobocan, I. Takac, R. Kavalar, U. Maver, Cells 2021, 11, 117.
E. Gavgiotaki, G. Filippidis, H. Markomanolaki, G. Kenanakis, S. Agelaki, V. Georgoulias, I. Athanassakis, J. Biophotonics 2017, 10, 1152.
A. P. Schuller, M. Wojtynek, D. Mankus, M. Tatli, R. Kronenberg‐Tenga, S. G. Regmi, P. V. Dip, A. K. R. Lytton‐Jean, E. J. Brignole, M. Dasso, K. Weis, O. Medalia, T. U. Schwartz, Nature 2021, 598, 667.
O. Lieleg, R. M. Baumgärtel, A. R. Bausch, Biophys. J. 2009, 97, 1569.
معلومات مُعتمدة: 2021IYTE-1-0065 İYTE BAP Project; National Graduate Scholarship Program; 120Z588 Türkiye Bilimsel ve Teknolojik Araştirma Kurumu; 116Z547 Türkiye Bilimsel ve Teknolojik Araştirma Kurumu
فهرسة مساهمة: Keywords: conjugated polyelectrolyte; image analysis; nanophase separation; polymer dots; triple negative breast cancer
المشرفين على المادة: 0 (Fluorescent Dyes)
0 (Polymers)
0 (Polyelectrolytes)
0 (Solvents)
تواريخ الأحداث: Date Created: 20231216 Date Completed: 20240416 Latest Revision: 20240416
رمز التحديث: 20240416
DOI: 10.1002/mabi.202300402
PMID: 38102867
قاعدة البيانات: MEDLINE
الوصف
تدمد:1616-5195
DOI:10.1002/mabi.202300402