دورية أكاديمية

New and effective cassava bagasse-modified biochar to adsorb Food Red 17 and Acid Blue 9 dyes in a binary mixture.

التفاصيل البيبلوغرافية
العنوان: New and effective cassava bagasse-modified biochar to adsorb Food Red 17 and Acid Blue 9 dyes in a binary mixture.
المؤلفون: Gonçalves JO; Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia., Crispim MM; Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande, Rio Grande, Brazil., Rios EC; Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande, Rio Grande, Brazil., Silva LF; Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia., de Farias BS; Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande, Rio Grande, Brazil., Sant'Anna Cadaval Junior TR; Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande, Rio Grande, Brazil., de Almeida Pinto LA; Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande, Rio Grande, Brazil., Nawaz A; Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China., Manoharadas S; Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia., Dotto GL; Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil. guilherme_dotto@yahoo.com.br.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Jan; Vol. 31 (4), pp. 5209-5220. Date of Electronic Publication: 2023 Dec 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Manihot* , Water Pollutants, Chemical*/chemistry , Azo Compounds* , Benzenesulfonates* , Cellulose*, Coloring Agents/chemistry ; Hydrogen-Ion Concentration ; Charcoal/chemistry ; Adsorption ; Kinetics
مستخلص: A promissory technic for reducing environmental contaminants is the production of biochar from waste reuse and its application for water treatment. This study developed biochar (CWb) and NH 4 Cl-modified biochar (MCWb) using cassava residues as precursors. CWb and MCWb were characterized and evaluated in removing dyes (Acid Blue 9 and Food Red 17) in a binary system. The adsorbent demonstrated high adsorption capacity at all pH levels studied, showing its versatility regarding this process parameter. The equilibrium of all adsorption experiments was reached in 30 min. The adsorption process conformed to pseudo-first-order kinetics and extended Langmuir isotherm model. The thermodynamic adsorption experiments demonstrated that the adsorption process is physisorption, exhibiting exothermic and spontaneous characteristics. MCWb exhibited highly efficient and selective adsorption behavior towards the anionic dyes, indicating maximum adsorption capacity of 131 and 150 mg g -1 for Food Red 17 and Acid Blue 9, respectively. Besides, MCWb could be reused nine times, maintaining its original adsorption capacity. This study demonstrated an excellent adsorption capability of biochars in removing dyes. In addition, it indicated the recycling of wastes as a precursor of bio composts, a strategy for utilization in water treatment with binary systems. It showed the feasibility of the reuse capacity that indicated that the adsorbent may have many potential applications.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Aello OS, Owojuyigbe ES, Babatunde MS et al (2017) Sustainable conversion of agro-wastes into useful adsorbents. Appl Water Sci 7:3561–3571. (PMID: 10.1007/s13201-016-0494-0)
Alves DC, Pires RACV, Alga FFD et al (2021) Chitosan-coated glass beads in a fluidized bed for use in fixed-bed dye adsorption. Chem Eng Technol 44:631–638. (PMID: 10.1002/ceat.202000307)
Anas AK, Pratama SY, Izzah A, Kurniawan MA (2021) Sodium dodecylbenzene sulfonate-modified biochar as an adsorbent for the removal of methylene blue. Bull Chem React Eng Catal 16(1):188–195. (PMID: 10.9767/bcrec.16.1.10323.188-195)
Archin S, Sharifi SH, Asadpour G (2019) Optimization and modeling of simultaneous ultrasound-assisted adsorption of binary dyes using activated carbon from tobacco residues: response surface methodology. J Clean Prod 239:118136. (PMID: 10.1016/j.jclepro.2019.118136)
ASTM – American Society For Testing And Materials (2013) Standard test method for assignment of the DSC procedure for determining Tg of a polymer or an elastomeric compound. Method ASTM D7426 – 08. In: ASTM annual book of ASTM standards, West Conshohocken.  https://doi.org/10.1520/D7426-08.
Cantrell KB, Hunt PG, Uchimiya M et al (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428. (PMID: 10.1016/j.biortech.2011.11.084)
Chen J, Bai X, Yuan Y et al (2022a) Printing and dyeing sludge derived biochar for activation of peroxymonosulfate to remove aqueous organic pollutants: activation mechanisms and environmental safety assessment. Chem Eng J 446:136942. (PMID: 10.1016/j.cej.2022.136942)
Dos Reis GS, Thivet J, Laisné E, Srivastava V, Grimm A et al (2023a) Synthesis of novel mesoporous selenium-doped biochar with high-performance sodium diclofenac and reactive orange 16 dye removals. Chem Eng Sci 281:119129. (PMID: 10.1016/j.ces.2023.119129)
Dos Reis GS, Bergna D, Grimm A et al (2023b) Preparation of highly porous nitrogen-doped biochar derived from birch tree wastes with superior dye removal performance. Colloids Surf A Physicochem Eng Asp 669:131493. (PMID: 10.1016/j.colsurfa.2023.131493)
Dotto GL, McKay (2020) Current scenario and challenges in adsorption for water treatment. J Environ Chem Eng 8:103988. (PMID: 10.1016/j.jece.2020.103988)
Dotto GL, Pinto LAA, Hachicha MA et al (2015) New physicochemical interpretations for the adsorption of food dyes on chitosan films using statistical physics treatment. Food Chem 171:1–7. (PMID: 10.1016/j.foodchem.2014.08.098)
Druzian SP, Zanatta NP, Borchardt RK et al (2021) Chitin-psyllium based aerogel for the efficient removal of crystal violet from aqueous solutions. Int J Biol Macromol 179:366–376. (PMID: 10.1016/j.ijbiomac.2021.02.179)
Dupont GK, Oliveira MM, Clerici NJ et al (2023) Kinetic modelling and improvement of methane production from the anaerobic co-digestion of swine manure and cassava bagasse. Biomass Bioenergy 176:106900. (PMID: 10.1016/j.biombioe.2023.106900)
Franciski MA, Peres EC, Godinho M et al (2018) Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption. Waste Manag 78:630–638. (PMID: 10.1016/j.wasman.2018.06.040)
Fernández-Andrade KJ, González-Vargas MC, Rodríguez-Rico et al (2022) Evaluation of mass transfer in packed column for competitive adsorption of Tartrazine and brilliant blue FCF: a statistical analysis. Results in Engineering 14:100449. (PMID: 10.1016/j.rineng.2022.100449)
Gal J, Rodríguez A, Walker GM (2014) Dye adsorption onto mesoporous materials: pH influence, kinetics and equilibrium in buffered and saline media. Chem Eng J 146:355–361.
Gonçalves JO, da Silva KA, Rios EC et al (2020a) Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes removal in single and binary aqueous systems. Int J Biol Macromol 142:85–93. (PMID: 10.1016/j.ijbiomac.2019.09.074)
Gonçalves JO, da Silva KA, Rios EC et al (2020b) Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes removal in single and binary aqueous systems. Int J Biol Macromol 142:85–93. (PMID: 10.1016/j.ijbiomac.2019.09.074)
Gonçalves JO, Santos JP, Rios EC et al (2017) Development of chitosan based hybrid hydrogels for dyes removal from aqueous binary system. J Mol Liq 225:265–270. (PMID: 10.1016/j.molliq.2016.11.067)
Gryglewicz S, Lorenc-grabowska E (2004) Development of mesoporosity in activated carbons via coal modification using Ca- and Fe-exchange. Microporous Mesoporous Mater 76:193–201. (PMID: 10.1016/j.micromeso.2004.08.012)
Gupta VK, Suhas S (2009) Application of low-cost adsorbents for dye removal- a review. J Environ Manag 90:2313–2342. (PMID: 10.1016/j.jenvman.2008.11.017)
Gurav R, Bhatia SK, Choi TR et al (2021) Application of macroalgal biomass derived biochar and bioelectrochemical system with Shewanella for the adsorptive removal and biodegradation of toxic azo dye. Chemosphere 264:128539. (PMID: 10.1016/j.chemosphere.2020.128539)
Hernández-Abreu AB, Álvarez-Torrellas S, Águeda VI et al (2022) Enhanced removal of the endocrine disruptor compound bisphenol A by adsorption onto green-carbon materials. Effect of real effluents on the adsorption process. J Environ Manag 266:110604. (PMID: 10.1016/j.jenvman.2020.110604)
Huang P, Ge C, Feng D et al (2018) Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar. Sci Total Environ 616–617:1384–1391. (PMID: 10.1016/j.scitotenv.2017.10.177)
Jang ES, Ryu DY, Kim D (2022) Hydrothermal carbonization improves the quality of biochar derived from livestock manure by removing inorganic matter. Chemosphere 305:135391. (PMID: 10.1016/j.chemosphere.2022.135391)
Jin H, Capareda S, Chang Z et al (2014) Biochar pyrolytically produced from municipal solid wastes for aqueous As (V) removal: adsorption property and its improvement with KOH activation. Bioresour Technol 169:622–629. (PMID: 10.1016/j.biortech.2014.06.103)
Keiluweit M, Nico PS, Johnson MG et al (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253. (PMID: 10.1021/es9031419)
Kim KH, Kim JY, Cho TS et al (2012) Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour Technol 118:158–162. (PMID: 10.1016/j.biortech.2012.04.094)
Leng L, Huang H, Li H et al (2019) Biochar stability assessment methods: a review. Sci Total Environ 647:210–222. (PMID: 10.1016/j.scitotenv.2018.07.402)
Lima DR, Lima EC, Thue PS et al (2021) Comparison of acidic leaching using a conventional and ultrasound-assisted method for preparation of magnetic-activated biochar. J Environ Chem Eng 9:105865. (PMID: 10.1016/j.jece.2021.105865)
Nuanhchamnong C, Kositkanawuth K, Wantaneeyakul N (2022) Granular waterworks sludge-biochar composites: characterization and dye removal application. Results Eng 14:100451. (PMID: 10.1016/j.rineng.2022.100451)
Odeyemi SO, Iwuozor KO, Emenike EC et al (2023) Valorization of waste cassava peel into biochar: an alternative to electrically-powered process. Total Environ Res Themes 6:100029. (PMID: 10.1016/j.totert.2023.100029)
Oghenejoboh KM (2015) Effects of cassava wastewater on the quality of receiving water bodies intended for fish farming. Brazil J Appl Sci Technol 6:164. (PMID: 10.9734/BJAST/2015/14356)
Oghenejoboh KM, Orugba HO, Oghenejoboh UM et al (2021) Value-added cassava waste management and environmental sustainability in Nigeria: a review. Environ Challenges 4:100127. (PMID: 10.1016/j.envc.2021.100127)
Oliveira FJS, Santana DS, Costa SSB et al (2017) Generation, characterization, and reuse of solid wastes from a biodiesel production plant. Waste Manag 61:87–95. (PMID: 10.1016/j.wasman.2016.11.035)
Oyekanmi AA, Ahmad A, Hossain K et al (2019) Statistical optimization for adsorption of Rhodamine B dye from aqueous solutions. J Mol Liq 281:48–58. (PMID: 10.1016/j.molliq.2019.02.057)
Qiu H, Lv L, Pan BC et al (2009) Critical review in adsorption kinetic models. J Zheijang Univ Sci A 10:716–724. (PMID: 10.1631/jzus.A0820524)
Revankar MS, Lele SS (2007) Synthetic dye decolorization by Ganoderma sp., WR-1. Bioresour Technol 98:775–780. (PMID: 10.1016/j.biortech.2006.03.020)
Rovina K, Prabakaran PP, Siddiquee S (2016) Methods for the analysis of Sunset Yellow FCF (E110) in food and beverage products-a review. Anal Chem 85:47–56.
Ruthven DM (1984) Principles of adsorption and adsorption processes. John Wiley & Sons, New York.
Schio RDR, Martinello KB, Netto MS et al (2022) Adsorption performance of Food Red 17 dye using an eco-friendly material based on Luffa cylindrica and chitosan. J Mol Liq 349:118144. (PMID: 10.1016/j.molliq.2021.118144)
Shahinpour A, Tanhaei B, Ayati A et al (2022) Binary dyes adsorption onto novel designed magnetic clay-biopolymer hydrogel involves characterization and adsorption performance: kinetic, equilibrium, thermodynamic, and adsorption mechanism. J Mol Liq 366:120303. (PMID: 10.1016/j.molliq.2022.120303)
Shen D, Fan J, Zhou W et al (2009) Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems. J Hazard Mater 172:99–107. (PMID: 10.1016/j.jhazmat.2009.06.139)
Shin J, Kwak J, Lee YG et al (2021) Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: contribution of hydrophobic and π-π interactions. Environ Pollut 270:116244. (PMID: 10.1016/j.envpol.2020.116244)
Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds. John Wiley & Sons Inc, New Jersey.
Subbareddy Y, Kumar RN, Sudhakar BK, Reddy KR, Martha SK, Kaviyarasu K (2020) A facile approach of adsorption of acid blue 9 on aluminium silicate-coated Fuller’s Earth––Equilibrium and kinetics studies. Surfaces and Interfaces. 19.
Thapsamut T, Punsuvon V, Areeprasert C (2023) Fabrication of waste-derived porous geopolymer by community-scale carbonization and steam activation with potential copper adsorption. Waste Manag 166:325–335. (PMID: 10.1016/j.wasman.2023.05.004)
Thommes M, Kaneko K, Neimark AV et al (2015a) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. (PMID: 10.1515/pac-2014-1117)
Thommes M, Kaneko K, Neimark AV et al (2015b) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. (PMID: 10.1515/pac-2014-1117)
Tran HN, You SJ, Chao HP (2017) Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method. J Environ Manag 188:322–336. (PMID: 10.1016/j.jenvman.2016.12.003)
Vanni G, Escudero LB, Dotto GL (2017) Powdered grape seeds (PGS) as an alternative biosorbent to remove pharmaceutical dyes from aqueous solutions. Water Sci Technol 76:1177–1187. (PMID: 10.2166/wst.2017.307)
Vieira MGA, Gimenes ML, Godoy RPS et al (2018) Cassava (Manihot esculenta Crantz) stump biochar: physical/chemical characteristics and dye affinity. Chem Eng Commun 206:1–13.
Wu J, Yang J, Huang G et al (2020) Hydrothermal carbonization synthesis of cassava slag biochar with excellent adsorption performance for Rhodamine B. J Clean Prod 251:119717. (PMID: 10.1016/j.jclepro.2019.119717)
Xu Z, He M, Xu X et al (2021) Impacts of different activation processes on the carbon stability of biochar for oxidation resistance. Bioresour Technol 338:125555. (PMID: 10.1016/j.biortech.2021.125555)
Zazycki MA, Godinho M, Perondi D et al (2018) New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. J Clean Prod 171:57–65. (PMID: 10.1016/j.jclepro.2017.10.007)
Zdravkov BD, Čermák JJ, Šefara M et al (2007) Pore classification in the characterization of porous materials: a perspective. Cent Eur J Chem 5:385–395.
Zhang M, Lin K, Zhong Y et al (2022) Functionalizing biochar by Co-pyrolysis shaddock peel with red mud for removing acid orange 7 from water. Environ Pollut 299:118893. (PMID: 10.1016/j.envpol.2022.118893)
Zhou Y, Liu X, Xiang Y et al (2017) Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modeling. Bioresour Technol 245:266–273. (PMID: 10.1016/j.biortech.2017.08.178)
Zornoza R, Moreno-Barriga F, Acosta JA et al (2016) Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 144:122–130. (PMID: 10.1016/j.chemosphere.2015.08.046)
فهرسة مساهمة: Keywords: Adsorption; Binary system; Dyes; Modified biochar
المشرفين على المادة: 0 (Coloring Agents)
0 (biochar)
9006-97-7 (bagasse)
H3R47K3TBD (brilliant blue)
0 (Water Pollutants, Chemical)
16291-96-6 (Charcoal)
25956-17-6 (Allura Red AC Dye)
0 (Azo Compounds)
0 (Benzenesulfonates)
9004-34-6 (Cellulose)
تواريخ الأحداث: Date Created: 20231219 Date Completed: 20240122 Latest Revision: 20240202
رمز التحديث: 20240202
DOI: 10.1007/s11356-023-31489-2
PMID: 38110688
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-023-31489-2