دورية أكاديمية

Protein profiling of conjunctival impression cytology samples of aniridia subjects.

التفاصيل البيبلوغرافية
العنوان: Protein profiling of conjunctival impression cytology samples of aniridia subjects.
المؤلفون: Stachon T; Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany., Fecher-Trost C; Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany., Latta L; Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany., Yapar D; Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany., Fries FN; Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany., Meyer MR; Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany., Käsmann-Kellner B; Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany., Seitz B; Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany., Szentmáry N; Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany.
المصدر: Acta ophthalmologica [Acta Ophthalmol] 2024 Jun; Vol. 102 (4), pp. e635-e645. Date of Electronic Publication: 2023 Dec 21.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 101468102 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1755-3768 (Electronic) Linking ISSN: 1755375X NLM ISO Abbreviation: Acta Ophthalmol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford, UK : Wiley-Blackwell
Original Publication: Oxford, UK ; Malden, MA : Blackwell Munksgaard
مواضيع طبية MeSH: Aniridia*/genetics , Aniridia*/metabolism , Aniridia*/diagnosis , Conjunctiva*/metabolism , Conjunctiva*/pathology, Humans ; Female ; Adult ; Male ; Adolescent ; Young Adult ; Middle Aged ; Proteomics/methods ; Mass Spectrometry ; Eye Proteins/metabolism ; Eye Proteins/genetics ; Cytology
مستخلص: Purpose: Congenital aniridia is a rare disease, which is in most cases related to PAX6 haploinsufficiency. Aniridia associated keratopathy (AAK) also belongs to ocular signs of congenital aniridia. In AAK, there is corneal epithelial thinning, corneal inflammation, vascularization and scarring. In advanced stage AAK, typically, conjunctival epithelial cells slowly replace the corneal epithelium. Based on previous results we hypothesize that alterations of the conjunctival cells in congenital aniridia may also support the corneal conjunctivalization process. The aim of this study was to identify deregulated proteins in conjunctival impression cytology samples of congenital aniridia subjects.
Methods: Conjunctival impression cytology samples of eight patients with congenital aniridia [age 34.5 ± 9.9 (17-51) years, 50% female] and eight healthy subjects [age 34.1 ± 11.9 (15-54) years, 50% female] were collected and analysed using mass spectrometry. Proteomic profiles were analysed in terms of molecular functions, biological processes, cellular components and pathway enrichment using the protein annotation of the evolutionary relationship (PANTHER) classification system.
Results: In total, 3323 proteins could be verified and there were 127 deregulated proteins (p < 0.01) in congenital aniridia. From the 127 deregulated proteins (DEPs), 82 altered biological processes, 63 deregulated cellular components, 27 significantly altered molecular functions and 31 enriched signalling pathways were identified. Pathological alteration of the biological processes and molecular functions of retinol binding and retinoic acid biosynthesis, as well as lipid metabolism and apoptosis related pathways could be demonstrated.
Conclusions: Protein profile of conjunctival impression cytology samples of aniridia subjects identifies alterations of retinol binding, retinoic acid biosynthesis, lipid metabolism and apoptosis related pathways. Whether these changes are directly related to PAX6 haploinsufficiency, must be investigated in further studies. These new findings offer the possibility to identify potential new drug targets.
(© 2023 The Authors. Acta Ophthalmologica published by John Wiley & Sons Ltd on behalf of Acta Ophthalmologica Scandinavica Foundation.)
References: Bishop, C.A., Schulze, M.B., Klaus, S. & Weitkunat, K. (2020) The branched‐chain amino acids valine and leucine have differential effects on hepatic lipid metabolism. The FASEB Journal, 34, 9727–9739.
Bonifacino, J.S. & Glick, B.S. (2004) The mechanisms of vesicle budding and fusion. Cell, 116, 153–166.
Calvão‐Pires, P., Santos‐Silva, R., Falcão‐Reis, F. & Rocha‐Sousa, A. (2014) Congenital Aniridia: clinic, genetics, therapeutics, and prognosis. International Scholarly Research Notices, 2014, 305350.
Collinson, J.M., Chanas, S.A., Hill, R.E. & West, J.D. (2004) Corneal development, limbal stem cell function, and corneal epithelial cell migration in the Pax6+/− mouse. Investigative Ophthalmology and Visual Science, 45, 1101–1108.
Diller, T., Thompson, J. & Steer, B. (2021) Biological validation of a novel process and product for quantitating western blots. Journal of Biotechnology, 326, 52–60.
Dua, H.S., Joseph, A., Shanmuganathan, V.A. & Jones, R.E. (2003) Stem cell differentiation and the effects of deficiency. Eye, 17, 877–885.
Fecher‐Trost, C., Wissenbach, U., Beck, A., Schalkowsky, P., Stoerger, C., Doerr, J. et al. (2013) The in vivo TRPV6 protein starts at a non‐AUG triplet, decoded as methionine, upstream of canonical initiation at AUG. Journal of Biological Chemistry, 288, 16629–16644.
Hingorani, M., Hanson, I. & Van Heyningen, V. (2012) Aniridia. European Journal of Human Genetics, 20, 1011–1017.
Holm, P.C., Mader, M.T., Haubst, N., Wizenmann, A., Sigvardsson, M. & Götz, M. (2007) Loss‐ and gain‐of‐function analyses reveal targets of Pax6 in the developing mouse telencephalon. Molecular and Cellular Neurosciences, 34, 99–119.
Ihnatko, R., Eden, U., Fagerholm, P. & Lagali, N. (2016) Congenital Aniridia and the ocular surface. The Ocular Surface, 14, 196–206.
Ihnatko, R., Edén, U., Lagali, N., Dellby, A. & Fagerholm, P. (2013) Analysis of protein composition and protein expression in the tear fluid of patients with congenital aniridia. Journal of Proteomics, 94, 78–88.
Katiyar, P., Stachon, T., Fries, F.N., Parow, F., Ulrich, M., Langenbucher, A. et al. (2021) Decreased FABP5 and DSG1 protein expression following PAX6 knockdown of differentiated human limbal epithelial cells. Experimental Eye Research, 215, 108904.
Khandekar, N., Willcox, M.D.P., Shih, S., Simmons, P., Vehige, J. & Garrett, Q. (2013) Decrease in hyperosmotic stress‐induced corneal epithelial cell apoptosis by L‐carnitine. Molecular Vision, 19, 1945–1956.
Lagali, N., Edén, U., Utheim, T.P., Chen, X., Riise, R., Dellby, A. et al. (2013) In vivo morphology of the limbal palisades of vogt correlates with progressive stem cell deficiency in aniridia‐related keratopathy. Investigative Ophthalmology and Visual Science, 54, 5333–5342.
Lagali, N., Wowra, B., Fries, F.N., Latta, L., Moslemani, K., Utheim, T.P. et al. (2020) Early phenotypic features of aniridia‐associated keratopathy and association with PAX6 coding mutations. The Ocular Surface, 18, 130–140.
Lai, W., Huang, R., Wang, B., Shi, M., Guo, F., Li, L. et al. (2023) Novel aspect of neprilysin in kidney fibrosis via ACSL4‐mediated ferroptosis of tubular epithelial cells. MedComm, 4, e330.
Latta, L., Figueiredo, F.C., Ashery‐Padan, R., Collinson, J.M., Daniels, J., Ferrari, S. et al. (2021) Pathophysiology of aniridia‐associated keratopathy: developmental aspects and unanswered questions. The Ocular Surface, 22, 245–266.
Latta, L., Knebel, I., Bleil, C., Stachon, T., Katiyar, P., Zussy, C. et al. (2021) Similarities in DSG1 and KRT3 downregulation through retinoic acid treatment and PAX6 knockdown related expression profiles: does PAX6 affect RA signaling in Limbal epithelial cells? Biomolecules, 11, 1651.
Latta, L., Ludwig, N., Krammes, L., Stachon, T., Fries, F.N., Mukwaya, A. et al. (2021) Abnormal neovascular and proliferative conjunctival phenotype in limbal stem cell deficiency is associated with altered microRNA and gene expression modulated by PAX6 mutational status in congenital aniridia. The Ocular Surface, 19, 115–127.
Lee, H., Khan, R. & O'Keefe, M. (2008) Aniridia: current pathology and management. Acta Ophthalmologica, 86, 708–715.
Leiper, L.J., Walczysko, P., Kucerova, R., Ou, J., Shanley, L.J., Lawson, D. et al. (2006) The roles of calcium signaling and ERK1/2 phosphorylation in a Pax6+/− mouse model of epithelial wound‐healing delay. BMC Biology, 4, 27.
Li, G., Xu, F., Zhu, J., Krawczyk, M., Zhang, Y., Yuan, J. et al. (2015) Transcription factor PAX6 (paired box 6) controls limbal stem cell lineage in development and disease. The Journal of Biological Chemistry, 290, 20448–20454.
Martínez‐Reyes, I. & Chandel, N.S. (2020) Mitochondrial TCA cycle metabolites control physiology and disease. Nature Communications, 11, 102.
Nesvizhskii, A.I., Keller, A., Kolker, E. & Aebersold, R. (2003) A statistical model for identifying proteins by tandem mass spectrometry. Analytical Chemistry, 75, 4646–4658.
Okada, Y., Shimazaki, T., Sobue, G. & Okano, H. (2004) Retinoic‐acid‐concentration‐dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Developmental Biology, 275, 124–142.
Puangsricharern, V. & Tseng, S.C.G. (1995) Cytologlogic evidence of corneal diseases with Limbal stem cell deficiency. Ophthalmology, 102, 1476–1485.
Ramaesh, T., Ramaesh, K., Leask, R., Springbett, A., Riley, S.C., Dhillon, B. et al. (2006) Increased apoptosis and abnormal wound‐healing responses in the heterozygous Pax6+/− mouse cornea. Investigative Ophthalmology and Visual Science, 47, 1911–1917.
Reis, L.M., Chassaing, N., Bardakjian, T., Thompson, S., Schneider, A. & Semina, E.V. (2023) ARHGAP35 is a novel factor disrupted in human developmental eye phenotypes. European Journal of Human Genetics, 31, 363–367.
Secker, G.A. & Daniels, J.T. (2009) Limbal epithelial stem cells of the cornea. In: StemBook [Internet]. Cambridge, MA: Harvard Stem Cell Institute. Available from: https://doi.org/10.3824/stembook.1.48.1.
Shin, D., Park, J., Han, D., Moon, J.H., Ryu, H.S. & Kim, Y. (2020) Identification of TUBB2A by quantitative proteomic analysis as a novel biomarker for the prediction of distant metastatic breast cancer. Clinical Proteomics, 17, 1–19.
Soria, J., Acera, A., Durán, J.A., Boto‐de‐Los‐Bueis, A., Del‐Hierro‐Zarzuelo, A., González, N. et al. (2018) The analysis of human conjunctival epithelium proteome in ocular surface diseases using impression cytology and 2D‐DIGE. Experimental Eye Research, 167, 31–43.
Sun, Y., Du, R., Shang, Y., Liu, C., Zheng, L., Sun, R. et al. (2022) Rho GTPase‐activating protein 35 suppresses gastric cancer metastasis by regulating cytoskeleton reorganization and epithelial‐to‐mesenchymal transition. Bioengineered, 13, 14605–14615.
Swamhynathan, S. & Wells, A. (2020) Conjunctival goblet cells:ocular surface functions, disorders that affect them, and the potential for their regeneration. The Ocular Surface, 18, 19–26.
Tan, J.C.K., Tat, L.T. & Coroneo, M.T. (2016) Treatment of partial limbal stem cell deficiency with topical interferon α‐2b and retinoic acid. The British Journal of Ophthalmology, 100, 944–948.
Won, S.J., Cheung See Kit, M. & Martin, B.R. (2018) Protein depalmitoylases. Critical Reviews in Biochemistry and Molecular Biology, 53, 83–98.
Wu, C.‐Y., Persaud, S.D. & Ei, L.‐N. (2016) Retinoic acid induces ubiquitination‐resistant RIP140/LSD1 complex to fine‐tune PAX6 gene in neuronal differentiation. Stem Cells, 34, 114–123.
Yazdanpanah, G., Bohm, K.J., Hassan, O.M., Karas, F.I., Elhusseiny, A.M., Nonpassopon, M. et al. (2020) Management of Congenital Aniridia‐Associated Keratopathy: long‐term outcomes from a tertiary referral center. American Journal of Ophthalmology, 210, 8–18.
Yu, J., Perri, M., Jones, J.W., Pierzchalski, K., Ceaicovscaia, N., Cione, E. et al. (2022) Altered RBP1 gene expression impacts epithelial cell retinoic acid, proliferation, and microenvironment. Cell, 11, 792.
معلومات مُعتمدة: FF2021 DOG Sektion Kornea
فهرسة مساهمة: Keywords: congenital aniridia; conjunctiva; proteomics
المشرفين على المادة: 0 (Eye Proteins)
تواريخ الأحداث: Date Created: 20231222 Date Completed: 20240426 Latest Revision: 20240429
رمز التحديث: 20240430
DOI: 10.1111/aos.16614
PMID: 38130099
قاعدة البيانات: MEDLINE
الوصف
تدمد:1755-3768
DOI:10.1111/aos.16614