Long-read genome sequencing reveals a novel intronic retroelement insertion in NR5A1 associated with 46,XY differences of sexual development.

التفاصيل البيبلوغرافية
العنوان: Long-read genome sequencing reveals a novel intronic retroelement insertion in NR5A1 associated with 46,XY differences of sexual development.
المؤلفون: Del Gobbo GF; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada., Wang X; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada., Couse M; Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Canada., Mackay L; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada., Goldsmith C; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada., Marshall AE; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada., Liang Y; Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Canada., Lambert C; PacBio of California, Inc, Menlo Park, California, USA., Zhang S; PacBio of California, Inc, Menlo Park, California, USA., Dhillon H; PacBio of California, Inc, Menlo Park, California, USA., Fanslow C; PacBio of California, Inc, Menlo Park, California, USA., Rowell WJ; PacBio of California, Inc, Menlo Park, California, USA., Marshall CR; Division of Genome Diagnostics, The Hospital for Sick Children, Toronto, Canada., Kernohan KD; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.; Newborn Screening Ontario, Ottawa, Canada., Boycott KM; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada.
مؤلفون مشاركون: Care4Rare Canada Consortium; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada.
المصدر: American journal of medical genetics. Part A [Am J Med Genet A] 2024 May; Vol. 194 (5), pp. e63522. Date of Electronic Publication: 2023 Dec 22.
نوع المنشور: Case Reports; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: United States NLM ID: 101235741 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4833 (Electronic) Linking ISSN: 15524825 NLM ISO Abbreviation: Am J Med Genet A Subsets: MEDLINE
أسماء مطبوعة: Publication: Hoboken, N.J. : Wiley-Blackwell
Original Publication: Hoboken, N.J. : Wiley-Liss, c2003-
مواضيع طبية MeSH: Retroelements*/genetics , Disorder of Sex Development, 46,XY*/genetics, Humans ; Mutation ; Introns/genetics ; Rare Diseases/genetics ; Sexual Development ; Steroidogenic Factor 1/genetics
مستخلص: Despite significant advancements in rare genetic disease diagnostics, many patients with rare genetic disease remain without a molecular diagnosis. Novel tools and methods are needed to improve the detection of disease-associated variants and understand the genetic basis of many rare diseases. Long-read genome sequencing provides improved sequencing in highly repetitive, homologous, and low-complexity regions, and improved assessment of structural variation and complex genomic rearrangements compared to short-read genome sequencing. As such, it is a promising method to explore overlooked genetic variants in rare diseases with a high suspicion of a genetic basis. We therefore applied PacBio HiFi sequencing in a large multi-generational family presenting with autosomal dominant 46,XY differences of sexual development (DSD), for whom extensive molecular testing over multiple decades had failed to identify a molecular diagnosis. This revealed a rare SINE-VNTR-Alu retroelement insertion in intron 4 of NR5A1, a gene in which loss-of-function variants are an established cause of 46,XY DSD. The insertion segregated among affected family members and was associated with loss-of-expression of alleles in cis, demonstrating a functional impact on NR5A1. This case highlights the power of long-read genome sequencing to detect genomic variants that have previously been intractable to detection by standard short-read genomic testing.
(© 2023 Wiley Periodicals LLC.)
References: Batista, R. L., Yamaguchi, K., di Rodrigues, A. S., Nishi, M. Y., Goodier, J. L., Carvalho, L. R., Domenice, S., Costa, E. M. F., Kazazian, H. H., & Mendonca, B. B. (2019). Mobile DNA in endocrinology: LINE‐1 retrotransposon causing partial androgen insensitivity syndrome. The Journal of Clinical Endocrinology and Metabolism, 104(12), 6385–6390. https://doi.org/10.1210/jc.2019-00144.
Boycott, K. M., Hartley, T., Kernohan, K. D., Dyment, D. A., Howley, H., Innes, A. M., Bernier, F. P., & Brudno, M. (2022). Care4Rare Canada: Outcomes from a decade of network science for rare disease gene discovery. The American Journal of Human Genetics, 109(11), 1947–1959. https://doi.org/10.1016/j.ajhg.2022.10.002.
Chaisson, M. J. P., Sanders, A. D., Zhao, X., Malhotra, A., Porubsky, D., Rausch, T., Gardner, E. J., Rodriguez, O. L., Guo, L., Collins, R. L., Fan, X., Wen, J., Handsaker, R. E., Fairley, S., Kronenberg, Z. N., Kong, X., Hormozdiari, F., Lee, D., Wenger, A. M., … Lee, C. (2019). Multi‐platform discovery of haplotype‐resolved structural variation in human genomes. Nature Communications, 10(1), 1. https://doi.org/10.1038/s41467-018-08148-z.
Chen, X., Schulz‐Trieglaff, O., Shaw, R., Barnes, B., Schlesinger, F., Källberg, M., Cox, A. J., Kruglyak, S., & Saunders, C. T. (2016). Manta: Rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics, 32(8), 1220–1222. https://doi.org/10.1093/bioinformatics/btv710.
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H., & Li, H. (2021). Haplotype‐resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods, 18(2), 2–175. https://doi.org/10.1038/s41592-020-01056-5.
Ciaccio, M., Costanzo, M., Guercio, G., De Dona, V., Marino, R., Ramirez, P. C., Galeano, J., Warman, D. M., Berensztein, E., Saraco, N., Baquedano, M. S., Chaler, E., Maceiras, M., Lazzatti, J. M., Rivarola, M. A., & Belgorosky, A. (2012). Preserved fertility in a patient with a 46,XY disorder of sex development due to a new heterozygous mutation in the NR5A1/SF‐1 gene: Evidence of 46,XY and 46,XX gonadal dysgenesis phenotype variability in multiple members of an affected kindred. Hormone Research in Pædiatrics, 78(2), 119–126. https://doi.org/10.1159/000338346.
Clark, M. M., Stark, Z., Farnaes, L., Tan, T. Y., White, S. M., Dimmock, D., & Kingsmore, S. F. (2018). Meta‐analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. NPJ Genomic Medicine, 3(1), 1. https://doi.org/10.1038/s41525-018-0053-8.
Cohen, A. S. A., Farrow, E. G., Abdelmoity, A. T., Alaimo, J. T., Amudhavalli, S. M., Anderson, J. T., Bansal, L., Bartik, L., Baybayan, P., Belden, B., Berrios, C. D., Biswell, R. L., Buczkowicz, P., Buske, O., Chakraborty, S., Cheung, W. A., Coffman, K. A., Cooper, A. M., Cross, L. A., … Pastinen, T. (2022). Genomic answers for children: Dynamic analyses of >1000 pediatric rare disease genomes. Genetics in Medicine, 24(6), 1336–1348. https://doi.org/10.1016/j.gim.2022.02.007.
Conlin, L. K., Aref‐Eshghi, E., McEldrew, D. A., Luo, M., & Rajagopalan, R. (2022). Long‐read sequencing for molecular diagnostics in constitutional genetic disorders. Human Mutation, 43(11), 1531–1544. https://doi.org/10.1002/humu.24465.
de la Morena‐Barrio, B., Orlando, C., Sanchis‐Juan, A., García, J. L., Padilla, J., de la Morena‐Barrio, M. E., Puruunen, M., Stouffs, K., Cifuentes, R., Borràs, N., Bravo‐Pérez, C., Benito, R., Cuenca‐Guardiola, J., Vicente, V., Vidal, F., Hernández‐Rivas, J. M., Ouwehand, W., Jochmans, K., & Corral, J. (2022). Molecular dissection of structural variations involved in antithrombin deficiency. The Journal of Molecular Diagnostics, 24(5), 462–475. https://doi.org/10.1016/j.jmoldx.2022.01.009.
Domenice, S., Machado, A. Z., Ferreira, F. M., Ferraz‐de‐Souza, B., Lerario, A. M., Lin, L., Nishi, M. Y., Gomes, N. L., da Silva, T. E., Silva, R. B., Correa, R. V., Montenegro, L. R., Narciso, A., Costa, E. M. F., Achermann, J. C., & Mendonca, B. B. (2016). Wide spectrum of NR5A1‐related phenotypes in 46,XY and 46,XX individuals. Birth Defects Research Part C: Embryo Today: Reviews, 108(4), 309–320. https://doi.org/10.1002/bdrc.21145.
Ewans, L. J., Minoche, A. E., Schofield, D., Shrestha, R., Puttick, C., Zhu, Y., Drew, A., Gayevskiy, V., Elakis, G., Walsh, C., Adès, L. C., Colley, A., Ellaway, C., Evans, C.‐A., Freckmann, M.‐L., Goodwin, L., Hackett, A., Kamien, B., Kirk, E. P., … Roscioli, T. (2022). Whole exome and genome sequencing in mendelian disorders: A diagnostic and health economic analysis. European Journal of Human Genetics, 30(10), 1121–1131. https://doi.org/10.1038/s41431-022-01162-2.
Fabbri‐Scallet, H., de Sousa, L. M., Maciel‐Guerra, A. T., Guerra‐Júnior, G., & de Mello, M. P. (2020). Mutation update for the NR5A1 gene involved in DSD and infertility. Human Mutation, 41(1), 58–68. https://doi.org/10.1002/humu.23916.
Forte, E., Ramialison, M., Nim, H. T., Mara, M., Li, J. Y., Cohn, R., Daigle, S. L., Boyd, S., Stanley, E. G., Elefanty, A. G., Hinson, J. T., Costa, M. W., Rosenthal, N. A., & Furtado, M. B. (2022). Adult mouse fibroblasts retain organ‐specific transcriptomic identity. eLife, 11, e71008. https://doi.org/10.7554/eLife.71008.
Gardner, E. J., Lam, V. K., Harris, D. N., Chuang, N. T., Scott, E. C., Pittard, W. S., Mills, R. E., & Devine, S. E. (2017). The mobile element locator tool (MELT): Population‐scale mobile element discovery and biology. Genome Research, 27(11), 1916–1929. https://doi.org/10.1101/gr.218032.116.
Gonen, N., Eozenou, C., Mitter, R., Elzaiat, M., Stévant, I., Aviram, R., Bernardo, A. S., Chervova, A., Wankanit, S., Frachon, E., Commère, P.‐H., Brailly‐Tabard, S., Valon, L., Barrio Cano, L., Levayer, R., Mazen, I., Gobaa, S., Smith, J. C., McElreavey, K., … Bashamboo, A. (2023). In vitro cellular reprogramming to model gonad development and its disorders. Science Advances, 9(1), eabn9793. https://doi.org/10.1126/sciadv.abn9793.
Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P., Gauthier, L. D., Brand, H., Solomonson, M., Watts, N. A., Rhodes, D., Singer‐Berk, M., England, E. M., Seaby, E. G., Kosmicki, J. A., … Genome Aggregation Database Consortium. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581(7809), 434–443. https://doi.org/10.1038/s41586-020-2308-7.
Kronenberg, Z. N., Osborne, E. J., Cone, K. R., Kennedy, B. J., Domyan, E. T., Shapiro, M. D., Elde, N. C., & Yandell, M. (2015). Wham: Identifying structural variants of biological consequence. PLoS Computational Biology, 11(12), e1004572. https://doi.org/10.1371/journal.pcbi.1004572.
Layer, R. M., Chiang, C., Quinlan, A. R., & Hall, I. M. (2014). LUMPY: A probabilistic framework for structural variant discovery. Genome Biology, 15(6), R84. https://doi.org/10.1186/gb-2014-15-6-r84.
Liao, W.‐W., Asri, M., Ebler, J., Doerr, D., Haukness, M., Hickey, G., Lu, S., Lucas, J. K., Monlong, J., Abel, H. J., Buonaiuto, S., Chang, X. H., Cheng, H., Chu, J., Colonna, V., Eizenga, J. M., Feng, X., Fischer, C., Fulton, R. S., … Paten, B. (2023). A draft human pangenome reference. Nature, 617(7960), 7960. https://doi.org/10.1038/s41586-023-05896-x.
Logsdon, G. A., Vollger, M. R., & Eichler, E. E. (2020). Long‐read human genome sequencing and its applications. Nature Reviews. Genetics, 21(10), 597–614. https://doi.org/10.1038/s41576-020-0236-x.
Marshall, A. E., MacDonald, S. K., Liang, Y., Couse, M., Consortium, C. C., Boycott, K. M., Richer, J., & Kernohan, K. D. (2023). RNA sequencing resolves novel DYNC2H1 variants causing short‐rib thoracic dysplasia type 3: Case report. Molecular Genetics & Genomic Medicine, n/a(n/a), e2247. https://doi.org/10.1002/mgg3.2247.
Martin, M., Ebert, P., & Marschall, T. (2023). Read‐based phasing and analysis of phased variants with WhatsHap. In B. A. Peters & R. Drmanac (Eds.), Haplotyping: Methods and protocols (pp. 127–138). Springer US. https://doi.org/10.1007/978-1-0716-2819-5_8.
McMillan, H. J., Davila, J., Osmond, M., Chakraborty, P., Care4Rare Canada Consortium, Boycott, K. M., Dyment, D. A., & Kernohan, K. D. (2021). Whole genome sequencing identifies pathogenic RNU4ATAC variants in a child with recurrent encephalitis, microcephaly, and normal stature. American Journal of Medical Genetics. Part A, 185(11), 3502–3506. https://doi.org/10.1002/ajmg.a.62457.
PacificBiosciences/pbsv. (2023). [Python]. PacBio. https://github.com/PacificBiosciences/pbsv (Original work published 2018).
Poplin, R., Chang, P.‐C., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., Newburger, D., Dijamco, J., Nguyen, N., Afshar, P. T., Gross, S. S., Dorfman, L., McLean, C. Y., & DePristo, M. A. (2018). A universal SNP and small‐indel variant caller using deep neural networks. Nature Biotechnology, 36(10), 983–987. https://doi.org/10.1038/nbt.4235.
Robevska, G., van den Bergen, J. A., Ohnesorg, T., Eggers, S., Hanna, C., Hersmus, R., Thompson, E. M., Baxendale, A., Verge, C. F., Lafferty, A. R., Marzuki, N. S., Santosa, A., Listyasari, N. A., Riedl, S., Warne, G., Looijenga, L., Faradz, S., Ayers, K. L., & Sinclair, A. H. (2018). Functional characterization of novel NR5A1 variants reveals multiple complex roles in disorders of sex development. Human Mutation, 39(1), 124–139. https://doi.org/10.1002/humu.23354.
Sabatella, M., Mantere, T., Waanders, E., Neveling, K., Mensenkamp, A. R., van Dijk, F., Hehir‐Kwa, J. Y., Derks, R., Kwint, M., O'Gorman, L., Tropa Martins, M., Gidding, C. E., Lequin, M. H., Küsters, B., Wesseling, P., Nelen, M., Biegel, J. A., Hoischen, A., Jongmans, M. C., & Kuiper, R. P. (2021). Optical genome mapping identifies a germline retrotransposon insertion in SMARCB1 in two siblings with atypical teratoid rhabdoid tumors. The Journal of Pathology, 255(2), 202–211. https://doi.org/10.1002/path.5755.
The GTEx Consortium. (2020). The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science (New York, N.Y.), 369(6509), 1318–1330. https://doi.org/10.1126/science.aaz1776.
Warman, D. M., Costanzo, M., Marino, R., Berensztein, E., Galeano, J., Ramirez, P. C., Saraco, N., Baquedano, M. S., Ciaccio, M., Guercio, G., Chaler, E., Maceiras, M., Lazzatti, J. M., Bailez, M., Rivarola, M. A., & Belgorosky, A. (2011). Three new SF‐1 (NR5A1) gene mutations in two unrelated families with multiple affected members: Within‐family variability in 46,XY subjects and low ovarian reserve in fertile 46,XX subjects. Hormone Research in Pædiatrics, 75(1), 70–77. https://doi.org/10.1159/000320029.
Wenger, A. M., Peluso, P., Rowell, W. J., Chang, P.‐C., Hall, R. J., Concepcion, G. T., Ebler, J., Fungtammasan, A., Kolesnikov, A., Olson, N. D., Töpfer, A., Alonge, M., Mahmoud, M., Qian, Y., Chin, C.‐S., Phillippy, A. M., Schatz, M. C., Myers, G., DePristo, M. A., … Hunkapiller, M. W. (2019). Accurate circular consensus long‐read sequencing improves variant detection and assembly of a human genome. Nature Biotechnology, 37(10), 1155–1162. https://doi.org/10.1038/s41587-019-0217-9.
معلومات مُعتمدة: Canada CIHR; Canada CIHR
فهرسة مساهمة: Keywords: HiFi sequencing; NR5A1; differences of sexual development; long‐read sequencing; retrotransposon
المشرفين على المادة: 0 (Retroelements)
0 (Steroidogenic Factor 1)
0 (NR5A1 protein, human)
تواريخ الأحداث: Date Created: 20231222 Date Completed: 20240411 Latest Revision: 20240812
رمز التحديث: 20240813
DOI: 10.1002/ajmg.a.63522
PMID: 38131126
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4833
DOI:10.1002/ajmg.a.63522