دورية أكاديمية

Action mechanism of the potential biocontrol agent Brevibacillus laterosporus SN19-1 against Xanthomonas oryzae pv. oryzae causing rice bacterial leaf blight.

التفاصيل البيبلوغرافية
العنوان: Action mechanism of the potential biocontrol agent Brevibacillus laterosporus SN19-1 against Xanthomonas oryzae pv. oryzae causing rice bacterial leaf blight.
المؤلفون: Su XX; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China., Wan TT; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China., Gao YD; Agriculture Technology Extension Service Center of Shanghai, Shanghai, 201103, China., Zhang SH; Agriculture Technology Extension Service Center of Shanghai, Shanghai, 201103, China., Chen X; Agriculture Technology Extension Service Center of Shanghai, Shanghai, 201103, China., Huang LQ; Agriculture Technology Extension Service Center of Shanghai, Shanghai, 201103, China., Wang W; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China. weiwang@ecust.edu.cn.
المصدر: Archives of microbiology [Arch Microbiol] 2023 Dec 24; Vol. 206 (1), pp. 40. Date of Electronic Publication: 2023 Dec 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0410427 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-072X (Electronic) Linking ISSN: 03028933 NLM ISO Abbreviation: Arch Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag.
مواضيع طبية MeSH: Oryza*/microbiology , Bacillus* , Xanthomonas*, Plant Diseases/prevention & control ; Plant Diseases/microbiology
مستخلص: The causal agent of rice bacterial leaf blight (BLB) is Xanthomonas oryzae pv. oryzae (Xoo), which causes serious damage to rice, leading to yield reduction or even crop failure. Brevibacillus laterosporus SN19-1 is a biocontrol strain obtained by long-term screening in our laboratory, which has a good antagonistic effect on a variety of plant pathogenic bacteria. In this study, we investigated the efficacy and bacterial inhibition of B. laterosporus SN19-1 against BLB to lay the theoretical foundation and research technology for the development of SN19-1 as a biopesticide of BLB. It was found that SN19-1 has the ability to fix nitrogen, detoxify organic phosphorus, and produce cellulase, protease, and siderophores, as well as IAA. In a greenhouse pot experiment, the control efficiency of SN19-1 against BLB was as high as 90.92%. Further investigation of the inhibitory mechanism of SN19-1 on Xoo found that the biofilm formation ability of Xoo was inhibited and the pathogenicity was weakened after the action of SN19-1 sterile supernatant on Xoo. The activities of enzymes related to respiration and the energy metabolism of Xoo were significantly inhibited, while the level of intracellular reactive oxygen species was greatly increased. Scanning electron microscopy observations showed folds on the surface of Xoo. A significant increase in cell membrane permeability and outer membrane permeability and a decrease in cell membrane fluidity resulted in the extravasation of intracellular substances and cell death. The results of this study highlight the role of B. laterosporus SN19-1 against the pathogen of BLB and help elucidate the underlying molecular mechanisms.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abdallah Y et al (2019) Plant growth promotion and suppression of bacterial leaf blight in rice by Paenibacillus polymyxa Sx3. Lett Appl Microbiol 68:423–429. https://doi.org/10.1111/lam.13117. (PMID: 10.1111/lam.1311730659625)
Ahsan T, Chen J, Zhao X, Irfan M, Ishaq H, Wu Y (2019) Action Mechanism of Streptomyces diastatochromogenes KX852460 Against Rhizoctonia solani AG-3 Involving Basidiospores Suppression and Oxidative Damage. Iran J Sci Technol Trans a Sci 43:2141–2147. https://doi.org/10.1007/s40995-019-00733-1. (PMID: 10.1007/s40995-019-00733-1)
Alegun O, Pandeya A, Cui J, Ojo I, Wei Y (2021) Donnan potential across the outer membrane of gram-negative bacteria and its effect on the permeability of antibiotics. Antibiotics. https://doi.org/10.3390/antibiotics10060701. (PMID: 10.3390/antibiotics10060701342080978230823)
Alonso-Hernando A, Alonso-Calleja C, Capita R (2010) Effects of exposure to poultry chemical decontaminants on the membrane fluidity of Listeria monocytogenes and Salmonella enterica strains. Int J Food Microbiol 137:130–136. https://doi.org/10.1016/j.ijfoodmicro.2009.11.022. (PMID: 10.1016/j.ijfoodmicro.2009.11.02220056288)
Bonaterra A, Badosa E, Daranas N, Francés J, Roselló G, Montesinos E (2022) Bacteria as biological control agents of plant diseases. Microorganisms 10:1759. (PMID: 10.3390/microorganisms10091759361443619502092)
Carezzano ME et al (2023) Biofilm-forming ability of phytopathogenic bacteria: a review of its involvement in plant stress. Plants 12:2207. (PMID: 10.3390/plants121122073729918610255566)
Chen S et al (2017) Biocontrol effects of Brevibacillus laterosporus AMCC100017 on potato common scab and its impact on rhizosphere bacterial communities. Biol Control 106:89–98. https://doi.org/10.1016/j.biocontrol.2017.01.005. (PMID: 10.1016/j.biocontrol.2017.01.005)
Chen S et al (2020) Identification of the novel bacterial blight resistance gene Xa46(t) by mapping and expression analysis of the rice mutant H120. Sci Rep 10:12642. https://doi.org/10.1038/s41598-020-69639-y. (PMID: 10.1038/s41598-020-69639-y327242167387522)
Chen X et al (2021) Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice. Plant Commun 2:100143. https://doi.org/10.1016/j.xplc.2021.100143. (PMID: 10.1016/j.xplc.2021.100143340273908132130)
Chen J et al (2022) Antibacterial Activity of the Essential Oil From Litsea cubeba Against Cutibacterium acnes and the Investigations of Its Potential Mechanism by Gas Chromatography-Mass Spectrometry Metabolomics. Front Microbiol. https://doi.org/10.3389/fmicb.2022.823845. (PMID: 10.3389/fmicb.2022.823845370083029817148)
Cherrat L, Dumas E, Bakkali M, Degraeve P, Laglaoui A, Oulahal N (2016) Effect of essential oils on cell viability, membrane integrity and membrane fluidity of Listeria innocua and Escherichia coli. J Essential Oil Bear Plants 19:155–166. https://doi.org/10.1080/0972060X.2015.1029986. (PMID: 10.1080/0972060X.2015.1029986)
Do TQ, Nguyen TT, Dinh VM (2023) Application of endophytic bacterium Bacillus velezensis BTR11 to control bacterial leaf blight disease and promote rice growth. Egypt J Biol Pest Control 33:97. https://doi.org/10.1186/s41938-023-00740-w. (PMID: 10.1186/s41938-023-00740-w)
El-shakh ASA et al (2015) Controlling bacterial leaf blight of rice and enhancing the plant growth with endophytic and rhizobacterial Bacillus strains. Toxicol Environ Chem 97:766–785. https://doi.org/10.1080/02772248.2015.1066176. (PMID: 10.1080/02772248.2015.1066176)
Elshakh ASA et al (2016) Controlling and Defence-related Mechanisms of Bacillus Strains Against Bacterial Leaf Blight of Rice. J Phytopathol 164:534–546. https://doi.org/10.1111/jph.12479. (PMID: 10.1111/jph.12479)
Faille C, Lemy C, Allion-Maurer A, Zoueshtiagh F (2019) Evaluation of the hydrophobic properties of latex microspheres and Bacillus spores. Influence of the particle size on the data obtained by the MATH method (microbial adhesion to hydrocarbons). Colloids Surf B 182:110398. https://doi.org/10.1016/j.colsurfb.2019.110398. (PMID: 10.1016/j.colsurfb.2019.110398)
Ghosh R, Barman S, Khatun J, Mandal NC (2016) Biological control of Alternaria alternata causing leaf spot disease of Aloe vera using two strains of rhizobacteria. Biol Control 97:102–108. https://doi.org/10.1016/j.biocontrol.2016.03.001. (PMID: 10.1016/j.biocontrol.2016.03.001)
Ibrahim HR, Sugimoto Y, Aoki T (2000) Ovotransferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism. Biochimica Et Biophysica Acta (BBA) - General Subjects 1523:196–205. https://doi.org/10.1016/S0304-4165(00)00122-7. (PMID: 10.1016/S0304-4165(00)00122-711042384)
Jiang H et al (2015) Antifungal activity of Brevibacillus laterosporus JX-5 and characterization of its antifungal components. World J Microbiol Biotechnol 31:1605–1618. https://doi.org/10.1007/s11274-015-1912-4. (PMID: 10.1007/s11274-015-1912-426265360)
Jiang H et al (2017) Antibacterial and antitumor activity of Bogorol B-JX isolated from Brevibacillus laterosporus JX-5. World J Microbiol Biotechnol 33:177. https://doi.org/10.1007/s11274-017-2337-z. (PMID: 10.1007/s11274-017-2337-z28921048)
Kakar KU, Nawaz Z, Cui Z, Almoneafy AA, Zhu B, Xie G-L (2014) Characterizing the mode of action of Brevibacillus laterosporus B4 for control of bacterial brown strip of rice caused by A. avenae subsp. avenae RS-1. World J Microbiol Biotechnol 30:469–478. https://doi.org/10.1007/s11274-013-1469-z. (PMID: 10.1007/s11274-013-1469-z23990042)
Kanugala S et al (2019) Chumacin-1 and Chumacin-2 from Pseudomonas aeruginosa strain CGK-KS-1 as novel quorum sensing signaling inhibitors for biocontrol of bacterial blight of rice. Microbiol Res 228:126301. https://doi.org/10.1016/j.micres.2019.126301. (PMID: 10.1016/j.micres.2019.12630131422232)
Kim S-M (2018) Identification of novel recessive gene xa44(t) conferring resistance to bacterial blight races in rice by QTL linkage analysis using an SNP chip. Theor Appl Genet 131:2733–2743. https://doi.org/10.1007/s00122-018-3187-2. (PMID: 10.1007/s00122-018-3187-2302256426244528)
Lee JE, Lee NK, Paik HD (2021) Antimicrobial and anti-biofilm effects of probiotic Lactobacillus plantarum KU200656 isolated from kimchi. Food Sci Biotechnol 30:97–106. https://doi.org/10.1007/s10068-020-00837-0. (PMID: 10.1007/s10068-020-00837-033552621)
Li Y et al (2021) BLB8, an antiviral protein from Brevibacillus laterosporus strain B8, inhibits Tobacco mosaic virus infection by triggering immune response in tobacco. Pest Manag Sci 77:4383–4392. https://doi.org/10.1002/ps.6472. (PMID: 10.1002/ps.647233969944)
Li Y, Bazghaleh N, Vail S, Mamet S, Siciliano S, Helgason B (2023) Root and rhizosphere fungi associated with the yield of diverse Brassica napus genotypes. Rhizosphere 25:100677. https://doi.org/10.1016/j.rhisph.2023.100677. (PMID: 10.1016/j.rhisph.2023.100677)
Liu Y et al (2022) Broad-spectrum antifungal activity of lipopeptide brevilaterin B and its inhibition effects against Fusarium oxysporum and Penicillium chrysogenum. J Appl Microbiol 132:1330–1342. https://doi.org/10.1111/jam.15285. (PMID: 10.1111/jam.1528534480826)
Ma C, Yuan S, Xie B, Li Q, Wang Q, Shao M (2022) IAA Plays an Important Role in Alkaline Stress Tolerance by Modulating Root Development and ROS Detoxifying Systems in Rice Plants. Int J Mol Sci. https://doi.org/10.3390/ijms232314817. (PMID: 10.3390/ijms232314817366140929820851)
Muheim C et al (2017) Increasing the permeability of Escherichia coli using MAC13243. Sci Rep 7:17629. https://doi.org/10.1038/s41598-017-17772-6. (PMID: 10.1038/s41598-017-17772-6292471665732295)
Neelam K et al (2020) High-resolution genetic mapping of a novel bacterial blight resistance gene xa-45(t) identified from Oryza glaberrima and transferred to Oryza sativa. Theor Appl Genet 133:689–705. https://doi.org/10.1007/s00122-019-03501-2. (PMID: 10.1007/s00122-019-03501-231811315)
Ning Y, Han P, Ma J, Liu Y, Jia Y (2021) Characterization of brevilaterins, multiple antimicrobial peptides simultaneously produced by Brevibacillus laterosporus S62–9, and their application in real food system. Food Biosci 42:101091. (PMID: 10.1016/j.fbio.2021.101091)
Rajabi S, Darban D, Tabatabaei RR, Hosseini F (2020) Antimicrobial effect of spore-forming probiotics Bacillus laterosporus and Bacillus megaterium against Listeria monocytogenes. Arch Microbiol 202:2791–2797. https://doi.org/10.1007/s00203-020-02004-9. (PMID: 10.1007/s00203-020-02004-932743669)
Rajer FU et al (2022) Bacillus spp.-mediated growth promotion of rice seedlings and suppression of bacterial blight disease under greenhouse conditions. Pathogens. https://doi.org/10.3390/pathogens11111251. (PMID: 10.3390/pathogens11111251363650039694674)
Sanya DRA et al (2022) A review of approaches to control bacterial leaf blight in rice. World J Microbiol Biotechnol 38:113. https://doi.org/10.1007/s11274-022-03298-1. (PMID: 10.1007/s11274-022-03298-135578069)
Shi Y-g et al (2019) Multifunctional alkyl ferulate esters as potential food additives: Antibacterial activity and mode of action against Listeria monocytogenes and its application on American sturgeon caviar preservation. Food Control 96:390–402. https://doi.org/10.1016/j.foodcont.2018.09.030. (PMID: 10.1016/j.foodcont.2018.09.030)
Shoji J, Sakazaki R, Wakisaka Y, Koizumi K, Mayama M (1976) Isolation of a new antibiotic, laterosporamine. Studies on antibiotics from the genus Bacillus. XIII. J Antibiot (Tokyo) 29:390–393. https://doi.org/10.7164/antibiotics.29.390. (PMID: 10.7164/antibiotics.29.390931807)
Sun Y et al (2022) Screening of siderophore-producing bacteria and their effects on promoting the growth of plants. Curr Microbiol 79:150. https://doi.org/10.1007/s00284-022-02777-w. (PMID: 10.1007/s00284-022-02777-w35396958)
Theodore CM et al (2014) Genomic and metabolomic insights into the natural product biosynthetic diversity of a feral-hog-associated Brevibacillus laterosporus strain. PLoS One 9:e90124. https://doi.org/10.1371/journal.pone.0090124. (PMID: 10.1371/journal.pone.0090124245950703940840)
Velusamy P, Immanuel JE, Gnanamanickam SS, Thomashow L (2006) Biological control of rice bacterial blight by plant-associated bacteria producing 2,4-diacetylphloroglucinol. Can J Microbiol 52:56–65. https://doi.org/10.1139/w05-106%M16541159. (PMID: 10.1139/w05-106%M1654115916541159)
Wang X, Tang D, Wang W (2020) Hyperosmotic adaptation of Pseudomonas protegens SN15-2 helps cells to survive at lethal temperatures. Biotechnol Bioprocess Eng 25:403–413. https://doi.org/10.1007/s12257-019-0430-x. (PMID: 10.1007/s12257-019-0430-x)
Wang Y et al (2023) Effects of monolauroyl-galactosylglycerol on membrane fatty acids and properties of Bacillus cereus. Appl Microbiol Biotechnol 107:4381–4393. https://doi.org/10.1007/s00253-023-12567-4. (PMID: 10.1007/s00253-023-12567-437204449)
Wen Y et al (2022) Multi-target antibacterial mechanism of moringin from Moringa oleifera seeds against Listeria monocytogenes. Front Microbiol. https://doi.org/10.3389/fmicb.2022.925291. (PMID: 10.3389/fmicb.2022.925291368171089808057)
Xing J et al (2021) Identification and fine-mapping of a new bacterial blight resistance gene, Xa47(t), in G252, an introgression line of yuanjiang common wild rice (Oryza rufipogon). Plant Dis 105:4106–4112. https://doi.org/10.1094/PDIS-05-21-0939-RE. (PMID: 10.1094/PDIS-05-21-0939-RE34261357)
Xu X et al (2022) TALE-induced immunity against the bacterial blight pathogen Xanthomonas oryzae pv. oryzae in rice. Phytopathology Research 4:47. https://doi.org/10.1186/s42483-022-00153-x. (PMID: 10.1186/s42483-022-00153-x)
Yugander A et al (2017) Virulence profiling of Xanthomonas oryzae pv. oryzae isolates, causing bacterial blight of rice in India. Eur J Plant Pathol 149:171–191. https://doi.org/10.1007/s10658-017-1176-y. (PMID: 10.1007/s10658-017-1176-y)
Zhang Z et al (2022) Effects of cinnamon essential oil on the physiological metabolism of Salmonella enteritidis. Front Microbiol. https://doi.org/10.3389/fmicb.2022.1035894. (PMID: 10.3389/fmicb.2022.1035894371803639881461)
Zhang W et al (2023a) Cellular response and molecular mechanism of glyphosate degradation by Chryseobacterium sp. Y16C. J Agric Food Chem 71:6650–6661. https://doi.org/10.1021/acs.jafc.2c07301. (PMID: 10.1021/acs.jafc.2c0730137084257)
Zhang Y, Qian Y, Zhang M, Qiao W (2023b) Repairing of rutin to the toxicity of combined F-53B and chromium pollution on the biofilm formed by Pseudomonas aeruginosa. J Environ Sci 127:158–168. https://doi.org/10.1016/j.jes.2021.12.019. (PMID: 10.1016/j.jes.2021.12.019)
Zhang B, Zhang H, Li F, Ouyang Y, Wang S (2020) Multiple alleles encoding atypical NLRs with unique central tandem repeats (CTRs) in rice confer resistance to Xanthomonas oryzae pv. oryzae. 植物通讯(英文) 1:12.
Zhu H-l et al (2020) Changes in cell membrane properties and phospholipid fatty acids of bacillus subtilis induced by polyphenolic extract of Sanguisorba officinalis L. J Food Sci 85:2164–2170. https://doi.org/10.1111/1750-3841.15170. (PMID: 10.1111/1750-3841.1517032572963)
Zhu M, Li Y, Chen D-p, Li C-p, Ouyang G-p, Wang Z-c (2023) Allicin-inspired disulfide derivatives containing quinazolin-4(3H)-one as a bacteriostat against Xanthomonas oryzae pv. oryzae. Pest Manag Sci 79:537–547. https://doi.org/10.1002/ps.7221. (PMID: 10.1002/ps.722136193761)
معلومات مُعتمدة: No. 23N51900200 the Science and Technology Commission of Shanghai Municipality, China; No. 23N51900200 the Science and Technology Commission of Shanghai Municipality, China; No. 23N51900200 the Science and Technology Commission of Shanghai Municipality, China; No. 23N51900200 the Science and Technology Commission of Shanghai Municipality, China; No. 23N51900200 the Science and Technology Commission of Shanghai Municipality, China; No. 23N51900200 the Science and Technology Commission of Shanghai Municipality, China; No. 23N51900200 the Science and Technology Commission of Shanghai Municipality, China
فهرسة مساهمة: Keywords: Antagonistic mechanism; Biocontrol; Brevibacillus laterosporus; Rice bacterial leaf blight
SCR Organism: Xanthomonas oryzae; Brevibacillus laterosporus
تواريخ الأحداث: Date Created: 20231224 Date Completed: 20231226 Latest Revision: 20240122
رمز التحديث: 20240123
DOI: 10.1007/s00203-023-03754-y
PMID: 38142456
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-072X
DOI:10.1007/s00203-023-03754-y