دورية أكاديمية

Functional modulation of lysophosphatidic acid type 2 G-protein coupled receptor facilitates alveolar bone formation.

التفاصيل البيبلوغرافية
العنوان: Functional modulation of lysophosphatidic acid type 2 G-protein coupled receptor facilitates alveolar bone formation.
المؤلفون: Kim TY; Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea., Kim A; Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea., Aryal YP; Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea., Sung S; Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea., Pokharel E; Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea., Neupane S; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA., Choi SY; Department of Oral and Maxillofacial Surgery, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea., Ha JH; Department of Conservative Dentistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea., Jung JK; Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea., Yamamoto H; Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan., An CH; Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea., Suh JY; Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea., Sohn WJ; Department of K-Beauty Business, College of Cosmetics and Pharmaceuticals, Daegu Hanny University, Gyeongsan, South Korea., Lee Y; Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea., Jang IH; Department of Oral Biochemistry and Molecular Biology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, South Korea., Norman DD; Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA., Tigyi GJ; Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA., An SY; Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea., Kim JY; Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea.
المصدر: Journal of cellular physiology [J Cell Physiol] 2024 Jan; Vol. 239 (1), pp. 112-123. Date of Electronic Publication: 2023 Dec 27.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0050222 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4652 (Electronic) Linking ISSN: 00219541 NLM ISO Abbreviation: J Cell Physiol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Wiley-Liss
Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology.
مواضيع طبية MeSH: Lysophospholipids*/metabolism , Osteogenesis* , Tooth Loss* , Receptors, Lysophospholipid*/metabolism, Animals ; Mice ; Cell Differentiation/physiology ; Osteoblasts/metabolism ; Periodontal Ligament/metabolism ; Transforming Growth Factor beta1/metabolism
مستخلص: Lipid biosynthesis is recently studied its functions in a range of cellular physiology including differentiation and regeneration. However, it still remains to be elucidated in its precise function. To reveal this, we evaluated the roles of lysophosphatidic acid (LPA) signaling in alveolar bone formation using the LPA type 2 receptor (LPAR2) antagonist AMG-35 (Amgen Compound 35) using tooth loss without periodontal disease model which would be caused by trauma and usually requires a dental implant to restore masticatory function. In this study, in vitro cell culture experiments in osteoblasts and periodontal ligament fibroblasts revealed cell type-specific responses, with AMG-35 modulating osteogenic differentiation in osteoblasts in vitro. To confirm the in vivo results, we employed a mouse model of tooth loss without periodontal disease. Five to 10 days after tooth extraction, AMG-35 facilitated bone formation in the tooth root socket as measured by immunohistochemistry for differentiation markers KI67, Osteocalcin, Periostin, RUNX2, transforming growth factor beta 1 (TGF-β1) and SMAD2/3. The increased expression and the localization of these proteins suggest that AMG-35 elicits osteoblast differentiation through TGF-β1 and SMAD2/3 signaling. These results indicate that LPAR2/TGF-β1/SMAD2/3 represents a new signaling pathway in alveolar bone formation and that local application of AMG-35 in traumatic tooth loss can be used to facilitate bone regeneration and healing for further clinical treatment.
(© 2023 Wiley Periodicals LLC.)
References: Adhikari, N., Neupane, S., Aryal, Y. P., Choi, M., Sohn, W.-J., Lee, Y., Jung, J.-K., Ha, J.-H., Choi, S.-Y., Suh, J.-Y., Kim, J.-Y., Rho, M.-C., Lee, T.-H., Yamamoto, H., An, C.-H., Kim, S.-H., An, S.-Y., & Kim, J.-Y. (2019). Effects of oleanolic acid acetate on bone formation in an experimental periodontitis model in mice. Journal of Periodontal Research, 54(5), 533-545. https://doi.org/10.1111/jre.12657.
Adhikari, N., Prasad Aryal, Y., Jung, J.-K., Ha, J.-H., Choi, S.-Y., Kim, J.-Y., Lee, T.-H., Kim, S.-H., Yamamoto, H., Suh, J.-Y., An, C.-H., Lee, Y., Sohn, W.-J., An, S.-Y., & Kim, J.-Y. (2021). Resveratrol enhances bone formation by modulating inflammation in the mouse periodontitis model. Journal of Periodontal Research, 56(4), 735-745. https://doi.org/10.1111/jre.12870.
Alioli, C. A., Demesmay, L., Laurencin-Dalacieux, S., Beton, N., Farlay, D., Follet, H., Saber, A., Duboeuf, F., Chun, J., Rivera, R., Bouvard, D., Machuca-Gayet, I., Salles, J.-P., Gennero, I., & Peyruchaud, O. (2020). Expression of the type 1 lysophosphatidic acid receptor in osteoblastic cell lineage controls both bone mineralization and osteocyte specification. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1865(8), 158715. https://doi.org/10.1016/j.bbalip.2020.158715.
Andreasen, J. O., Ahrensburg, S. S., & Tsilingaridis, G. (2012). Root fractures: The influence of type of healing and location of fracture on tooth survival rates-An analysis of 492 cases. Dental Traumatology, 28(5), 404-409. https://doi.org/10.1111/j.1600-9657.2012.01132.x.
Bae, J.-E., Hwang, S.-M., Aryal, Y. P., Kim, T.-Y., Sohn, W.-J., An, S.-Y., Kim, J.-Y., An, C.-H., Lee, Y., Kim, Y.-G., Park, J.-W., Lee, J.-M., Kim, J.-Y., & Suh, J.-Y. (2022). Effects of erythropoietin on osteoblast in the tooth extraction socket in mice periodontitis model. Frontiers in Physiology, 13, 987625. https://doi.org/10.3389/fphys.2022.987625.
Beck, H. P., Kohn, T., Rubenstein, S., Hedberg, C., Schwandner, R., Hasslinger, K., Dai, K., Li, C., Liang, L., Wesche, H., Frank, B., An, S., Wickramasinghe, D., Jaen, J., Medina, J., Hungate, R., & Shen, W. (2008). Discovery of potent LPA2 (EDG4) antagonists as potential anticancer agents. Bioorganic & Medicinal Chemistry Letters, 18(3), 1037-1041. https://doi.org/10.1016/j.bmcl.2007.12.024.
Birjandi, A. A., Suzano, F. R., & Sharpe, P. T. (2020). Drug repurposing in dentistry: Towards application of small molecules in dentin repair. International Journal of Molecular Sciences, 21(17), 6394. https://doi.org/10.3390/ijms21176394.
Boby, N., Ransom, A., Pace, B. T., Williams, K. M., Mabee, C., Das, A., Srivastav, S. K., Porter, E., & Pahar, B. (2021). Enhanced intestinal TGF-β/SMAD-dependent signaling in simian immunodeficiency virus infected rhesus macaques. Cells, 10(4), 806. https://doi.org/10.3390/cells10040806.
Cochran, D. L. (2008). Inflammation and bone loss in periodontal disease. Journal of Periodontology, 79(8s), 1569-1576. https://doi.org/10.1902/jop.2008.080233.
Fujii, S., Maeda, H., Tomokiyo, A., Monnouchi, S., Hori, K., Wada, N., & Akamine, A. (2010). Effects of TGF-β1 on the proliferation and differentiation of human periodontal ligament cells and a human periodontal ligament stem/progenitor cell line. Cell and Tissue Research, 342(2), 233-242. https://doi.org/10.1007/s00441-010-1037-x.
Geraldo, L. H. M., Spohr, T. C. L. S., Amaral, R. F., Fonseca, A. C. C., Garcia, C., Mendes, F. A., Freitas, C., dosSantos, M. F., & Lima, F. R. S. (2021). Role of lysophosphatidic acid and its receptors in health and disease: Novel therapeutic strategies. Signal Transduction and Targeted Therapy, 6(1), 45. https://doi.org/10.1038/s41392-020-00367-5.
Huang, J., Han, Q., Cai, M., Zhu, J., Li, L., Yu, L., Wang, Z., Fan, G., Zhu, Y., Lu, J., & Zhou, G. (2022). Effect of angiogenesis in bone tissue engineering. Annals of Biomedical Engineering, 50(8), 898-913. https://doi.org/10.1007/s10439-022-02970-9.
Huang, L. S., Fu, P., Patel, P., Harijith, A., Sun, T., Zhao, Y., Garcia, J. G. N., Chun, J., & Natarajan, V. (2013). Lysophosphatidic acid receptor-2 deficiency confers protection against Bleomycin-Induced lung injury and fibrosis in mice. American Journal of Respiratory Cell and Molecular Biology, 49(6), 912-922. https://doi.org/10.1165/rcmb.2013-0070OC.
Hyun, S.-Y., Lee, J.-H., Kang, K.-J., & Jang, Y.-J. (2017). Effect of FGF-2, TGF-β-1, and BMPs on teno/ligamentogenesis and osteo/cementogenesis of human periodontal ligament stem cells. Molecules and Cells, 40(8), 550-557. https://doi.org/10.14348/molcells.2017.0019.
Jann, J., Gascon, S., Roux, S., & Faucheux, N. (2020). Influence of the TGF-β superfamily on osteoclasts/osteoblasts balance in physiological and pathological bone conditions. International Journal of Molecular Sciences, 21(20), 7597. https://doi.org/10.3390/ijms21207597.
Khalil, H., Kanisicak, O., Prasad, V., Correll, R. N., Fu, X., Schips, T., Vagnozzi, R. J., Liu, R., Huynh, T., Lee, S.-J., Karch, J., & Molkentin, J. D. (2017). Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. Journal of Clinical Investigation, 127(10), 3770-3783. https://doi.org/10.1172/JCI94753.
Kim, T.-Y., Park, J.-K., Prasad Aryal, Y., Lee, E.-S., Neupane, S., Sung, S., Pokharel, E., Yeon, C.-Y., Kim, J.-Y., Jung, J.-K., Yamamoto, H., An, C.-H., Lee, Y., Sohn, W.-J., Jang, I.-H., An, S.-Y., & Kim, J.-Y. (2020). Facilitation of bone healing processes based on the developmental function of Meox2 in tooth loss lesion. International Journal of Molecular Sciences, 21(22), 8701. https://doi.org/10.3390/ijms21228701.
Kime, C., Sakaki-Yumoto, M., Goodrich, L., Hayashi, Y., Sami, S., Derynck, R., Asahi, M., Panning, B., Yamanaka, S., & Tomoda, K. (2016). Autotaxin-mediated lipid signaling intersects with LIF and BMP signaling to promote the naive pluripotency transcription factor program. Proceedings of the National Academy of Sciences, 113(44), 12478-12483. https://doi.org/10.1073/pnas.1608564113.
Kowalczewski, C. J., & Saul, J. M. (2018). Biomaterials for the delivery of growth factors and other therapeutic agents in tissue engineering approaches to bone regeneration. Frontiers in Pharmacology, 9, 513. https://doi.org/10.3389/fphar.2018.00513.
Lapierre, D. M., Tanabe, N., Pereverzev, A., Spencer, M., Shugg, R. P. P., Dixon, S. J., & Sims, S. M. (2010). Lysophosphatidic acid signals through multiple receptors in osteoclasts to elevate cytosolic calcium concentration, evoke retraction, and promote cell survival. Journal of Biological Chemistry, 285(33), 25792-25801. https://doi.org/10.1074/jbc.M110.109322.
Lee, D.-J., Lee, J.-M., Kim, E.-J., Takata, T., Abiko, Y., Okano, T., Green, D. W., Shimono, M., & Jung, H.-S. (2017). Bio-implant as a novel restoration for tooth loss. Scientific Reports, 7(1), 7414. https://doi.org/10.1038/s41598-017-07819-z.
Li, J., Zhang, F., Zhang, N., Geng, X., Meng, C., Wang, X., & Yang, Y. (2019). Osteogenic capacity and cytotherapeutic potential of periodontal ligament cells for periodontal regeneration in vitro and in vivo. PeerJ, 7(3), e6589. https://doi.org/10.7717/peerj.6589.
Liu, Y. B., Kharode, Y., Bodine, P. V. N., Yaworsky, P. J., Robinson, J. A., & Billiard, J. (2010). LPA induces osteoblast differentiation through interplay of two receptors: LPA1 and LPA4. Journal of Cellular Biochemistry, 109(4), 794-800. https://doi.org/10.1002/jcb.22471.
Makurvet, F. D. (2021). Biologics vs. small molecules: Drug costs and patient access. Medicine in Drug Discovery, 9, 100075. https://doi.org/10.1016/j.medidd.2020.100075.
Mashimo, T., Sato, Y., Akita, D., Toriumi, T., Namaki, S., Matsuzaki, Y., Yonehara, Y., & Honda, M. (2019). Bone marrow-derived mesenchymal stem cells enhance bone marrow regeneration in dental extraction sockets. Journal of Oral Science, 61(2), 284-293. https://doi.org/10.2334/josnusd.18-0143.
Min, K.-K., Neupane, S., Adhikari, N., Sohn, W.-J., An, S.-Y., Kim, J.-Y., An, C.-H., Lee, Y., Kim, Y.-G., Park, J.-W., Lee, J.-M., Kim, J.-Y., & Suh, J.-Y. (2020). Effects of resveratrol on bone-healing capacity in the mouse tooth extraction socket. Journal of Periodontal Research, 55(2), 247-257. https://doi.org/10.1111/jre.12710.
Morstein, J., Dacheux, M. A., Norman, D. D., Shemet, A., Donthamsetti, P. C., Citir, M., Frank, J. A., Schultz, C., Isacoff, E. Y., Parrill, A. L., Tigyi, G. J., & Trauner, D. (2020). Optical control of lysophosphatidic acid signaling. Journal of the American Chemical Society, 142(24), 10612-10616. https://doi.org/10.1021/jacs.0c02154.
Rahim-Wöstefeld, S., El Sayed, N., Weber, D., Kaltschmitt, J., Bäumer, A., El-Sayed, S., Eickholz, P., & Pretzl, B. (2020). Tooth-related factors for tooth loss 20 years after active periodontal therapy-A partially prospective study. Journal of Clinical Periodontology, 47(10), 1227-1236. https://doi.org/10.1111/jcpe.13348.
Reddy, M. A., & Natarajan, R. (2021). Cooperative activation of divergent pathways by LPAR1 and LPAR2 receptors in fibrotic signaling. American Journal of Physiology-Renal Physiology, 320(3), F322-F324. https://doi.org/10.1152/ajprenal.00685.2020.
Romanos, G. E., Delgado-Ruiz, R., & Sculean, A. (2019). Concepts for prevention of complications in implant therapy. Periodontology 2000, 81(1), 7-17. https://doi.org/10.1111/prd.12278.
Rotundo, R., Pagliaro, U., Bendinelli, E., Esposito, M., & Buti, J. (2015). Long-term outcomes of soft tissue augmentation around dental implants on soft and hard tissue stability: A systematic review. Clinical Oral Implants Research, 26, 123-138. https://doi.org/10.1111/clr.12629.
Sheng, X., Yung, Y. C., Chen, A., & Chun, J. (2015). Lysophosphatidic acid signalling in development. Development, 142(8), 1390-1395. https://doi.org/10.1242/dev.121723.
Sims, S. M., Panupinthu, N., Lapierre, D. M., Pereverzev, A., & Dixon, S. J. (2013). Lysophosphatidic acid: A potential mediator of osteoblast-osteoclast signaling in bone. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1831(1), 109-116. https://doi.org/10.1016/j.bbalip.2012.08.001.
Struillou, X., Boutigny, H., Soueidan, A., & Layrolle, P. (2010). Experimental animal models in periodontology: A review. The Open Dentistry Journal, 4(1), 37-47. https://doi.org/10.2174/1874210601004010037.
Tigyi, G. J., Yue, J., Norman, D. D., Szabo, E., Balogh, A., Balazs, L., Zhao, G., & Lee, S. C. (2019). Regulation of tumor cell - microenvironment interaction by the autotaxin-lysophosphatidic acid receptor axis. Advances in Biological Regulation, 71, 183-193. https://doi.org/10.1016/j.jbior.2018.09.008.
Tzavlaki, K., & Moustakas, A. (2020). TGF-β signaling. Biomolecules, 10(3), 487. https://doi.org/10.3390/biom10030487.
Wu, M., Chen, G., & Li, Y.-P. (2016). TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Research, 4(1), 16009. https://doi.org/10.1038/boneres.2016.9.
Wu, X., Ma, Y., Su, N., Shen, J., Zhang, H., & Wang, H. (2019). Lysophosphatidic acid: Its role in bone cell biology and potential for use in bone regeneration. Prostaglandins & Other Lipid Mediators, 143, 106335. https://doi.org/10.1016/j.prostaglandins.2019.106335.
Xiao, W., Wang, Y., Pacios, S., Li, S., & Graves, D. T. (2016). Cellular and Molecular Aspects of Bone Remodeling (9-16). https://doi.org/10.1159/000351895.
Yodthong, T., Kedjarune-Leggat, U., Smythe, C., Wititsuwannakul, R., & Pitakpornpreecha, T. (2018). l-Quebrachitol promotes the proliferation, differentiation, and mineralization of MC3T3-E1 cells: Involvement of the BMP-2/Runx2/MAPK/Wnt/β-Catenin signaling pathway. Molecules, 23(12), 3086. https://doi.org/10.3390/molecules23123086.
Yuan, X., Pei, X., Zhao, Y., Tulu, U. S., Liu, B., & Helms, J. A. (2018). A Wnt-responsive PDL population effectuates extraction socket healing. Journal of Dental Research, 97(7), 803-809. https://doi.org/10.1177/0022034518755719.
Yung, Y. C., Stoddard, N. C., & Chun, J. (2014). LPA receptor signaling: pharmacology, physiology, and pathophysiology. Journal of Lipid Research, 55(7), 1192-1214. https://doi.org/10.1194/jlr.R046458.
Zou, M.-L., Chen, Z.-H., Teng, Y.-Y., Liu, S.-Y., Jia, Y., Zhang, K.-W., Sun, Z.-L., Wu, J.-J., Yuan, Z.-D., Feng, Y., Li, X., Xu, R.-S., & Yuan, F.-L. (2021). The Smad dependent TGF-β and BMP signaling pathway in bone remodeling and therapies. Frontiers in Molecular Biosciences, 8, 593310. https://doi.org/10.3389/fmolb.2021.593310.
معلومات مُعتمدة: 2018R1A2A3075600 National Research Foundation of Korea; 2019R1A2C1011226 National Research Foundation of Korea; 2022R1I1A2063745 National Research Foundation of Korea; 2022R1A6A3A13072435 National Research Foundation of Korea; 2018R1D1A1A02048916 National Research Foundation of Korea; 2017R1A5A2015391 National Research Foundation of Korea
فهرسة مساهمة: Keywords: G-protein-coupled receptors; SMAD2/3 proteins; lysophosphatidic acid receptors; osteoblasts; transforming growth factor beta1
المشرفين على المادة: PG6M3969SG (lysophosphatidic acid)
0 (Lysophospholipids)
0 (Transforming Growth Factor beta1)
0 (Receptors, Lysophospholipid)
تواريخ الأحداث: Date Created: 20231227 Date Completed: 20240205 Latest Revision: 20240625
رمز التحديث: 20240625
DOI: 10.1002/jcp.31148
PMID: 38149778
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-4652
DOI:10.1002/jcp.31148