دورية أكاديمية

ANRIL, H19 and TUG1: a review about critical long non-coding RNAs in cardiovascular diseases.

التفاصيل البيبلوغرافية
العنوان: ANRIL, H19 and TUG1: a review about critical long non-coding RNAs in cardiovascular diseases.
المؤلفون: da Cunha Agostini L; Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Morro do Cruzeiro, s/nº, Ouro Prêto, Minas Gerais, CEP 35402-163, Brazil., Almeida TC; Escola Superior Instituto Butantan (ESIB), Laboratório de Dor e Sinalização, Instituto Butantan, São Paulo, São Paulo, Brazil., da Silva GN; Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Morro do Cruzeiro, s/nº, Ouro Prêto, Minas Gerais, CEP 35402-163, Brazil. nicioli@ufop.edu.br.; Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Prêto, Brazil. nicioli@ufop.edu.br.
المصدر: Molecular biology reports [Mol Biol Rep] 2023 Dec 28; Vol. 51 (1), pp. 31. Date of Electronic Publication: 2023 Dec 28.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Reidel Country of Publication: Netherlands NLM ID: 0403234 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-4978 (Electronic) Linking ISSN: 03014851 NLM ISO Abbreviation: Mol Biol Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Dordrecht, Boston, Reidel.
مواضيع طبية MeSH: Cardiovascular Diseases*/diagnosis , Cardiovascular Diseases*/genetics , Cardiovascular Diseases*/physiopathology , RNA, Long Noncoding*/genetics , RNA, Long Noncoding*/metabolism, Humans ; Genetic Predisposition to Disease
مستخلص: Cardiovascular diseases are the leading cause of death worldwide. They are non-transmissible diseases that affect the cardiovascular system and have different etiologies such as smoking, lipid disorders, diabetes, stress, sedentary lifestyle and genetic factors. To date, lncRNAs have been associated with increased susceptibility to the development of cardiovascular diseases such as hypertension, acute myocardial infarction, stroke, angina and heart failure. In this way, lncRNAs are becoming a very promising point for the prevention and diagnosis of cardiovascular diseases. Therefore, this review highlights the most important and recent discoveries about the mechanisms of action of the lncRNAs ANRIL, H19 and TUG1 and their clinical relevance in these pathologies. This may contribute to early detection of cardiovascular diseases in order to prevent the pathological phenotype from becoming established.
(© 2023. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Mahpour A, Mullen AC (2021) Our emerging understanding of the roles of long non-coding RNAs in normal liver function, disease, and malignancy. JHEP Rep 3:100177. https://doi.org/10.1016/j.jhepr.2020.100177. (PMID: 10.1016/j.jhepr.2020.10017733294829)
Kufel J, Grzechnik P (2019) Small nucleolar RNAs tell a different tale. Trends Genet 35:104–117. https://doi.org/10.1016/j.tig.2018.11.005. (PMID: 10.1016/j.tig.2018.11.00530563726)
Mattick JS, Amaral PP, Carninci P et al (2023) Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 24:430–447. https://doi.org/10.1038/s41580-022-00566-8. (PMID: 10.1038/s41580-022-00566-836596869)
Frankish A, Diekhans M, Jungreis I et al (2021) GENCODE 2021. Nucleic Acids Res 49:D916–D923. https://doi.org/10.1093/nar/gkaa1087. (PMID: 10.1093/nar/gkaa108733270111)
Flippot R, Beinse G, Boilève A et al (2019) Long non-coding RNAs in genitourinary malignancies: a whole new world. Nat Rev Urol 16:484–504. https://doi.org/10.1038/s41585-019-0195-1. (PMID: 10.1038/s41585-019-0195-131110275)
Nassiri SM, Rahbarghazi R (2014) Interactions of mesenchymal stem cells with endothelial cells. Stem Cells Dev 23:319–332. https://doi.org/10.1089/scd.2013.0419. (PMID: 10.1089/scd.2013.041924171705)
Statello L, Guo C-J, Chen L-L, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22:96–118. https://doi.org/10.1038/s41580-020-00315-9. (PMID: 10.1038/s41580-020-00315-933353982)
Atianand MK, Hu W, Satpathy AT et al (2016) A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell 165:1672–1685. https://doi.org/10.1016/j.cell.2016.05.075. (PMID: 10.1016/j.cell.2016.05.075273154815289747)
Zheng X, Han H, Liu G et al (2017) LncRNA wires up Hippo and Hedgehog signaling to reprogramme glucose metabolism. EMBO J 36:3325–3335. https://doi.org/10.15252/embj.201797609. (PMID: 10.15252/embj.201797609289633955686550)
Nitsche A, Rose D, Fasold M et al (2015) Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved. RNA 21:801–812. https://doi.org/10.1261/rna.046342.114. (PMID: 10.1261/rna.046342.114258024084408788)
Lim LJ, Wong SYS, Huang F et al (2019) Roles and regulation of long noncoding RNAs in hepatocellular carcinoma. Cancer Res 79:5131–5139. https://doi.org/10.1158/0008-5472.CAN-19-0255. (PMID: 10.1158/0008-5472.CAN-19-025531337653)
Liao Y, Zhang B, Zhang T et al (2019) LncRNA GATA6-AS promotes cancer cell proliferation and inhibits apoptosis in glioma by downregulating lncRNA TUG1. Cancer Biother Radiopharm 34:660–665. https://doi.org/10.1089/cbr.2019.2830. (PMID: 10.1089/cbr.2019.283031809214)
Ma L, Wang F, Du C et al (2018) Long non-coding RNA MEG3 functions as a tumour suppressor and has prognostic predictive value in human pancreatic cancer. Oncol Rep. https://doi.org/10.3892/or.2018.6178. (PMID: 10.3892/or.2018.6178305922936365691)
Zhang J-R, Sun H-J (2020) LncRNAs and circular RNAs as endothelial cell messengers in hypertension: mechanism insights and therapeutic potential. Mol Biol Rep 47:5535–5547. https://doi.org/10.1007/s11033-020-05601-5. (PMID: 10.1007/s11033-020-05601-532567025)
Pant T, Dhanasekaran A, Fang J et al (2018) Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy. BMC Cardiovasc Disord 18:197. https://doi.org/10.1186/s12872-018-0939-5. (PMID: 10.1186/s12872-018-0939-5303424786196023)
Olczak KJ, Taylor-Bateman V, Nicholls HL et al (2021) Hypertension genetics past, present and future applications. J Intern Med 290:1130–1152. https://doi.org/10.1111/joim.13352. (PMID: 10.1111/joim.1335234166551)
Gyselaers W (2022) Hemodynamic pathways of gestational hypertension and preeclampsia. Am J Obstet Gynecol 226:S988–S1005. https://doi.org/10.1016/j.ajog.2021.11.022. (PMID: 10.1016/j.ajog.2021.11.02235177225)
Al Ghorani H, Götzinger F, Böhm M, Mahfoud F (2022) Arterial hypertension—clinical trials update 2021. Nutr Metab Cardiovasc Dis 32:21–31. https://doi.org/10.1016/j.numecd.2021.09.007. (PMID: 10.1016/j.numecd.2021.09.00734690044)
Gioia S, Nardelli S, Ridola L, Riggio O (2020) Causes and management of non-cirrhotic portal hypertension. Curr Gastroenterol Rep 22:56. https://doi.org/10.1007/s11894-020-00792-0. (PMID: 10.1007/s11894-020-00792-0329407857498444)
Klinkhammer BM, Goldschmeding R, Floege J, Boor P (2017) Treatment of renal fibrosis—turning challenges into opportunities. Adv Chronic Kidney Dis 24:117–129. https://doi.org/10.1053/j.ackd.2016.11.002. (PMID: 10.1053/j.ackd.2016.11.00228284377)
Liang Z, Wang L (2022) Expression and clinical significance of lncRNA NORAD in patients with gestational hypertension. Ginekol Pol. https://doi.org/10.5603/GP.a2022.0016. (PMID: 10.5603/GP.a2022.001635997215)
Wang H, Qin R, Cheng Y (2020) LncRNA-Ang362 promotes pulmonary arterial hypertension by regulating miR-221 and miR-222. Shock 53:723–729. https://doi.org/10.1097/SHK.0000000000001410. (PMID: 10.1097/SHK.000000000000141031313741)
Zhuo X, Wu Y, Yang Y et al (2019) LncRNA AK094457 promotes AngII-mediated hypertension and endothelial dysfunction through suppressing of activation of PPARγ. Life Sci 233:116745. https://doi.org/10.1016/j.lfs.2019.116745. (PMID: 10.1016/j.lfs.2019.11674531404524)
Zhao X, Wang C, Liu M et al (2022) LncRNA FENDRR servers as a possible marker of essential hypertension and regulates human umbilical vein endothelial cells dysfunction via miR-423-5p/Nox4 axis. Int J Gen Med 15:2529–2540. https://doi.org/10.2147/IJGM.S338147. (PMID: 10.2147/IJGM.S338147352826488906997)
Sun Y, Wang T, Lv Y et al (2023) MALAT1 promotes platelet activity and thrombus formation through PI3k/Akt/GSK-3β signalling pathway. Stroke Vasc Neurol 8:181–192. https://doi.org/10.1136/svn-2022-001498. (PMID: 10.1136/svn-2022-00149836241224)
Zhang C, Zhang Y, Wang Q et al (2023) Long non-coding RNAs in intracerebral hemorrhage. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2023.1119275. (PMID: 10.3389/fnmol.2023.11192753814356210713730)
Wang J, Wu X, Wang L, Zhao C (2023) Low LncRNA LUCAT1 expression assists in the diagnosis of chronic heart failure and predicts poor prognosis. Int Heart J 64:22–174. https://doi.org/10.1536/ihj.22-174. (PMID: 10.1536/ihj.22-174)
Liu D, Li L, Xu J et al (2023) Upregulated lncRNA NORAD can diagnose acute cerebral ischemic stroke patients and predict poor prognosis. Folia Neuropathol 61:105–110. https://doi.org/10.5114/fn.2022.121478. (PMID: 10.5114/fn.2022.12147837114966)
Tayae E, Amr E, Zaki A, Elkaffash D (2023) LncRNA HIF1A-AS2: a potential biomarker for early diagnosis of acute myocardial infarction and predictor of left ventricular dysfunction. BMC Cardiovasc Disord 23:135. https://doi.org/10.1186/s12872-023-03164-4. (PMID: 10.1186/s12872-023-03164-43691877010012703)
Ma T, Li H, Liu H et al (2022) Neat1 promotes acute kidney injury to chronic kidney disease by facilitating tubular epithelial cells apoptosis via sequestering miR-129-5p. Mol Ther 30:3313–3332. https://doi.org/10.1016/j.ymthe.2022.05.019. (PMID: 10.1016/j.ymthe.2022.05.019356195579552914)
Vausort M, Wagner DR, Devaux Y (2014) Long noncoding RNAs in patients with acute myocardial infarction. Circ Res 115:668–677. https://doi.org/10.1161/CIRCRESAHA.115.303836. (PMID: 10.1161/CIRCRESAHA.115.30383625035150)
Congrains A, Kamide K, Oguro R et al (2012) Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis 220:449–455. https://doi.org/10.1016/j.atherosclerosis.2011.11.017. (PMID: 10.1016/j.atherosclerosis.2011.11.01722178423)
Bayoglu B, Yuksel H, Cakmak HA et al (2016) Polymorphisms in the long non-coding RNA CDKN2B-AS1 may contribute to higher systolic blood pressure levels in hypertensive patients. Clin Biochem 49:821–827. https://doi.org/10.1016/j.clinbiochem.2016.02.012. (PMID: 10.1016/j.clinbiochem.2016.02.01226944720)
Huang J, Li M, Li J et al (2021) LncRNA H19 rs4929984 variant is associated with coronary artery disease susceptibility in Han Chinese female population. Biochem Genet 59:1359–1380. https://doi.org/10.1007/s10528-021-10055-w. (PMID: 10.1007/s10528-021-10055-w33826032)
Cheng X, Chen Z, Wan Y et al (2019) Long non-coding RNA H19 suppression protects the endothelium against hyperglycemic-induced inflammation via inhibiting expression of miR-29b target gene vascular endothelial growth factor a through activation of the protein kinase B/endothelial nitric oxide synthase pathway. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2019.00263. (PMID: 10.3389/fcell.2019.00263320106906923656)
Ma Y, Ma W, Huang L et al (2015) Long non-coding RNAs, a new important regulator of cardiovascular physiology and pathology. Int J Cardiol 188:105–110. https://doi.org/10.1016/j.ijcard.2015.04.021. (PMID: 10.1016/j.ijcard.2015.04.02125917923)
Zhao W, He A, Zou P (2022) Genetic association between the lncRNA ANRIL rs10757272 polymorphism and intracranial aneurysm susceptibility in Asians. Neurosurg Rev 46:15. https://doi.org/10.1007/s10143-022-01927-9. (PMID: 10.1007/s10143-022-01927-936512102)
MacMillan HJ, Kong Y, Calvo-Roitberg E et al (2022) High-throughput analysis of ANRIL circRNA isoforms in human pancreatic islets. Sci Rep 12:7745. https://doi.org/10.1038/s41598-022-11668-w. (PMID: 10.1038/s41598-022-11668-w355461619095874)
Xu S, Wang H, Pan H et al (2016) ANRIL lncRNA triggers efficient therapeutic efficacy by reprogramming the aberrant INK4-hub in melanoma. Cancer Lett 381:41–48. https://doi.org/10.1016/j.canlet.2016.07.024. (PMID: 10.1016/j.canlet.2016.07.02427461581)
Wang C-H, Li Q-Y, Nie L et al (2020) LncRNA ANRIL promotes cell proliferation, migration and invasion during acute myeloid leukemia pathogenesis via negatively regulating miR-34a. Int J Biochem Cell Biol 119:105666. https://doi.org/10.1016/j.biocel.2019.105666. (PMID: 10.1016/j.biocel.2019.10566631830533)
Ghafouri-Fard S, Safari M, Taheri M, Samadian M (2022) Expression of linear and circular lncRNAs in Alzheimer’s disease. J Mol Neurosci 72:187–200. https://doi.org/10.1007/s12031-021-01900-z. (PMID: 10.1007/s12031-021-01900-z34415549)
Zheng M, Zheng Y, Gao M et al (2019) Expression and clinical value of lncRNA MALAT1 and lncRNA ANRIL in glaucoma patients. Exp Ther Med. https://doi.org/10.3892/etm.2019.8345. (PMID: 10.3892/etm.2019.8345321042507027159)
Broadbent HM, Peden JF, Lorkowski S et al (2008) Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet 17:806–814. https://doi.org/10.1093/hmg/ddm352. (PMID: 10.1093/hmg/ddm35218048406)
Abd-Elmawla MA, Fawzy MW, Rizk SM, Shaheen AA (2018) Role of long non-coding RNAs expression (ANRIL, NOS3-AS, and APOA1-AS) in development of atherosclerosis in Egyptian systemic lupus erythematosus patients. Clin Rheumatol 37:3319–3328. https://doi.org/10.1007/s10067-018-4269-x. (PMID: 10.1007/s10067-018-4269-x30128915)
Li Y, Zhang D, Zhang Y et al (2020) Association of lncRNA polymorphisms with triglyceride and total cholesterol levels among myocardial infarction patients in Chinese population. Gene 724:143684. https://doi.org/10.1016/j.gene.2019.02.085. (PMID: 10.1016/j.gene.2019.02.08530898706)
Tsai P-C, Liao Y-C, Lin T-H et al (2012) Additive effect of ANRIL and BRAP polymorphisms on ankle-brachial index in a Taiwanese population. Circ J 76:446–452. https://doi.org/10.1253/circj.CJ-11-0925. (PMID: 10.1253/circj.CJ-11-092522122968)
Guo F, Tang C, Li Y et al (2018) The interplay of Lnc RNA ANRIL and miR-181b on the inflammation-relevant coronary artery disease through mediating NF-κB signalling pathway. J Cell Mol Med 22:5062–5075. https://doi.org/10.1111/jcmm.13790. (PMID: 10.1111/jcmm.13790300796036156284)
Wang F, Su X, Liu C et al (2017) Prognostic value of plasma long noncoding RNA ANRIL for in-stent restenosis. Med Sci Monit 23:4733–4739. https://doi.org/10.12659/MSM.904352. (PMID: 10.12659/MSM.904352289704685635947)
Wang S, Zhang C, Zhang X (2019) Downregulation of long non-coding RNA ANRIL promotes proliferation and migration in hypoxic human pulmonary artery smooth muscle cells. Mol Med Rep. https://doi.org/10.3892/mmr.2019.10887. (PMID: 10.3892/mmr.2019.10887319746277003027)
Zhao W, Smith JA, Mao G et al (2015) The cis and trans effects of the risk variants of coronary artery disease in the Chr9p21 region. BMC Med Genomics 8:21. https://doi.org/10.1186/s12920-015-0094-0. (PMID: 10.1186/s12920-015-0094-0259582244432789)
Razeghian-Jahromi I, Zibaeenezhad MJ, Karimi Akhormeh A, Dara M (2022) Expression ratio of circular to linear ANRIL in hypertensive patients with coronary artery disease. Sci Rep 12:1802. https://doi.org/10.1038/s41598-022-05731-9. (PMID: 10.1038/s41598-022-05731-9351106268810852)
Song C-L, Wang J-P, Xue X et al (2017) Effect of circular ANRIL on the inflammatory response of vascular endothelial cells in a rat model of coronary atherosclerosis. Cell Physiol Biochem 42:1202–1212. https://doi.org/10.1159/000478918. (PMID: 10.1159/00047891828683453)
Wilusz JE (2017) Circular RNAs: unexpected outputs of many protein-coding genes. RNA Biol 14:1007–1017. https://doi.org/10.1080/15476286.2016.1227905. (PMID: 10.1080/15476286.2016.122790527571848)
Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38. https://doi.org/10.1186/1476-4598-10-38. (PMID: 10.1186/1476-4598-10-38214892893098824)
Yang J, Qi M, Fei X et al (2021) LncRNA H19: a novel oncogene in multiple cancers. Int J Biol Sci 17:3188–3208. https://doi.org/10.7150/ijbs.62573. (PMID: 10.7150/ijbs.62573344213598375239)
Gielchinsky I, Gilon M, Abu-lail R et al (2017) H19 non-coding RNA in urine cells detects urothelial carcinoma: a pilot study. Biomarkers. https://doi.org/10.1080/1354750X.2016.1276625. (PMID: 10.1080/1354750X.2016.127662528067543)
Zhang J, Liu M, Liang Y et al (2021) Correlation between lncRNA H19 rs2839698 polymorphism and susceptibility to NK/T cell lymphoma in Chinese population. J BUON 26:587–591. (PMID: 34077009)
Natarelli L, Parca L, Mazza T et al (2021) MicroRNAs and long non-coding RNAs as potential candidates to target specific motifs of SARS-CoV-2. Noncoding RNA 7:14. https://doi.org/10.3390/ncrna7010014. (PMID: 10.3390/ncrna7010014336705807931055)
Li X, Zhang Y, Su L et al (2022) FGF21 alleviates pulmonary hypertension by inhibiting mTORC1/EIF4EBP1 pathway via H19. J Cell Mol Med 26:3005–3021. https://doi.org/10.1111/jcmm.17318. (PMID: 10.1111/jcmm.17318354378839097832)
Su H, Xu X, Yan C et al (2018) LncRNA H19 promotes the proliferation of pulmonary artery smooth muscle cells through AT1R via sponging let-7b in monocrotaline-induced pulmonary arterial hypertension. Respir Res 19:254. https://doi.org/10.1186/s12931-018-0956-z. (PMID: 10.1186/s12931-018-0956-z305477916295077)
Omura J, Habbout K, Shimauchi T et al (2020) Identification of long noncoding RNA H19 as a new biomarker and therapeutic target in right ventricular failure in pulmonary arterial hypertension. Circulation 142:1464–1484. https://doi.org/10.1161/CIRCULATIONAHA.120.047626. (PMID: 10.1161/CIRCULATIONAHA.120.04762632698630)
Gao W, Li D, Xiao Z et al (2011) Detection of global DNA methylation and paternally imprinted H19 gene methylation in preeclamptic placentas. Hypertens Res 34:655–661. https://doi.org/10.1038/hr.2011.9. (PMID: 10.1038/hr.2011.921326306)
Yu L, Chen M, Zhao D et al (2009) The H19 gene imprinting in normal pregnancy and pre-eclampsia. Placenta 30:443–447. https://doi.org/10.1016/j.placenta.2009.02.011. (PMID: 10.1016/j.placenta.2009.02.01119342096)
Xu J, Xia Y, Zhang H et al (2018) Overexpression of long non-coding RNA H19 promotes invasion and autophagy via the PI3K/AKT/mTOR pathways in trophoblast cells. Biomed Pharmacother 101:691–697. https://doi.org/10.1016/j.biopha.2018.02.134. (PMID: 10.1016/j.biopha.2018.02.13429522949)
Gao W, Liu M, Yang Y et al (2012) The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biol 9:1002–1010. https://doi.org/10.4161/rna.20807. (PMID: 10.4161/rna.2080722832245)
Shu C, Yan D, Chen C et al (2019) Metformin exhibits its therapeutic effect in the treatment of pre-eclampsia via modulating the Met/H19/miR-148a-5p/P28 and Met/H19/miR-216-3p/EBI3 signaling pathways. Int Immunopharmacol 74:105693. https://doi.org/10.1016/j.intimp.2019.105693. (PMID: 10.1016/j.intimp.2019.10569331203154)
Zhao M, Wang H, Chen J et al (2021) Expression of long non-coding RNA H19 in colorectal cancer patients with type 2 diabetes. Arch Physiol Biochem 127:228–234. https://doi.org/10.1080/13813455.2019.1628068. (PMID: 10.1080/13813455.2019.162806831232113)
Alfaifi M, Verma AK, Alshahrani MY et al (2020) Assessment of cell-free long non-coding RNA-H19 and miRNA-29a, miRNA-29b expression and severity of diabetes. Diabetes Metab Syndr Obes 13:3727–3737. https://doi.org/10.2147/DMSO.S273586. (PMID: 10.2147/DMSO.S273586331167227569053)
Bitarafan S, Yari M, Broumand MA et al (2019) Association of increased levels of lncRNA H19 in PBMCs with risk of coronary artery disease. Cell J 20:564–568. https://doi.org/10.22074/cellj.2019.5544. (PMID: 10.22074/cellj.2019.554430124004)
Zhang Z, Gao W, Long Q-Q et al (2017) Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. Sci Rep 7:7491. https://doi.org/10.1038/s41598-017-07611-z. (PMID: 10.1038/s41598-017-07611-z287904155548926)
Sun H, Jiang Q, Sheng L, Cui K (2020) Downregulation of lncRNA H19 alleviates atherosclerosis through inducing the apoptosis of vascular smooth muscle cells. Mol Med Rep. https://doi.org/10.3892/mmr.2020.11394. (PMID: 10.3892/mmr.2020.11394333553687821340)
Li G, Ma X, Zhao H et al (2022) Long non-coding RNA H19 promotes leukocyte inflammation in ischemic stroke by targeting the miR-29b/C1QTNF6 axis. CNS Neurosci Ther 28:953–963. https://doi.org/10.1111/cns.13829. (PMID: 10.1111/cns.13829353225539062541)
Hu W, Ding H, Xu Q et al (2020) Relationship between long noncoding RNA H19 polymorphisms and risk of coronary artery disease in a Chinese population: a case–control study. Dis Markers 2020:1–11. https://doi.org/10.1155/2020/9839612. (PMID: 10.1155/2020/9839612)
Gao W, Zhu M, Wang H et al (2015) Association of polymorphisms in long non-coding RNA H19 with coronary artery disease risk in a Chinese population. Mutat Res/Fundam Mol Mech Mutagen 772:15–22. https://doi.org/10.1016/j.mrfmmm.2014.12.009. (PMID: 10.1016/j.mrfmmm.2014.12.009)
Zhang B, Jiang H, Chen J et al (2020) LncRNA H19 ameliorates myocardial infarction-induced myocardial injury and maladaptive cardiac remodelling by regulating KDM3A. J Cell Mol Med 24:1099–1115. https://doi.org/10.1111/jcmm.14846. (PMID: 10.1111/jcmm.1484631755219)
Safaei S, Tahmasebi-Birgani M, Bijanzadeh M, Seyedian SM (2020) Increased expression level of long noncoding RNA H19 in plasma of patients with myocardial infarction. Int J Mol Cell Med 9:122–129. https://doi.org/10.22088/IJMCM.BUMS.9.2.122. (PMID: 10.22088/IJMCM.BUMS.9.2.122329349497489114)
Fan Z, Liu S, Zhou H (2022) LncRNA H19 regulates proliferation, apoptosis and ECM degradation of aortic smooth muscle cells via miR-1-3p/ADAM10 axis in thoracic aortic aneurysm. Biochem Genet 60:790–806. https://doi.org/10.1007/s10528-021-10118-y. (PMID: 10.1007/s10528-021-10118-y34478010)
Wang H, Lian X, Gao W et al (2022) Long noncoding RNA H19 suppresses cardiac hypertrophy through the MicroRNA-145-3p/SMAD4 axis. Bioengineered 13:3826–3839. https://doi.org/10.1080/21655979.2021.2017564. (PMID: 10.1080/21655979.2021.2017564351397698973863)
Han Y, Dong B, Chen M, Yao C (2021) LncRNA H19 suppresses pyroptosis of cardiomyocytes to attenuate myocardial infarction in a PBX3/CYP1B1-dependent manner. Mol Cell Biochem 476:1387–1400. https://doi.org/10.1007/s11010-020-03998-y. (PMID: 10.1007/s11010-020-03998-y33389498)
Zhuang Y, Li T, Xiao H et al (2021) LncRNA-H19 drives cardiomyocyte senescence by targeting miR-19a/socs1/p53 axis. Front Pharmacol. https://doi.org/10.3389/fphar.2021.631835. (PMID: 10.3389/fphar.2021.631835350026888733735)
Rezaei M, Mokhtari MJ, Bayat M et al (2021) Long non-coding RNA H19 expression and functional polymorphism rs217727 are linked to increased ischemic stroke risk. BMC Neurol 21:54. https://doi.org/10.1186/s12883-021-02081-3. (PMID: 10.1186/s12883-021-02081-3335412847860182)
Viereck J, Bührke A, Foinquinos A et al (2020) Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy. Eur Heart J 41:3462–3474. https://doi.org/10.1093/eurheartj/ehaa519. (PMID: 10.1093/eurheartj/ehaa519326573248482849)
Chen C, Liu M, Tang Y et al (2020) LncRNA H19 is involved in myocardial ischemic preconditioning via increasing the stability of nucleolin protein. J Cell Physiol 235:5985–5994. https://doi.org/10.1002/jcp.29524. (PMID: 10.1002/jcp.2952431975412)
Liu L, An X, Li Z et al (2016) The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 111:56–65. https://doi.org/10.1093/cvr/cvw078. (PMID: 10.1093/cvr/cvw07827084844)
Li Z, Shu X, Chang Y et al (2019) Effect of lncRNA H19 on the apoptosis of vascular endothelial cells in arteriosclerosis obliterans via the NF-κB pathway. Eur Rev Med Pharmacol Sci 23:4491–4497. (PMID: 31173326)
Tang F, Zhang S, Wang H et al (2022) lncRNA H19 promotes Ox-LDL-induced dysfunction of human aortic endothelial cells through the miR-152/VEGFA axis. J Healthc Eng 2022:1–11. https://doi.org/10.1155/2022/3795060. (PMID: 10.1155/2022/3795060)
Young TL, Matsuda T, Cepko CL (2005) The noncoding RNA Taurine Upregulated Gene 1 is required for differentiation of the murine retina. Curr Biol 15:501–512. https://doi.org/10.1016/j.cub.2005.02.027. (PMID: 10.1016/j.cub.2005.02.02715797018)
Zhou H, Sun L, Wan F (2019) Molecular mechanisms of TUG1 in the proliferation, apoptosis, migration and invasion of cancer cells (Review). Oncol Lett. https://doi.org/10.3892/ol.2019.10848. (PMID: 10.3892/ol.2019.10848320020266960386)
Tang T, Cheng Y, She Q et al (2018) Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer. Biomed Pharmacother 107:338–346. https://doi.org/10.1016/j.biopha.2018.07.076. (PMID: 10.1016/j.biopha.2018.07.07630098551)
Lin P-C, Huang H-D, Chang C-C et al (2016) Long noncoding RNA TUG1 is downregulated in non-small cell lung cancer and can regulate CELF1 on binding to PRC2. BMC Cancer 16:583. https://doi.org/10.1186/s12885-016-2569-6. (PMID: 10.1186/s12885-016-2569-6274854394971684)
Xue M, Xia F, Wang Y et al (2022) The role of LncRNA TUG1 in obesity-related diseases. Mini-Rev Med Chem 22:1305–1313. https://doi.org/10.2174/1389557522666220117120228. (PMID: 10.2174/138955752266622011712022835040400)
Joshi M, Rajender S (2020) Long non-coding RNAs (lncRNAs) in spermatogenesis and male infertility. Reprod Biol Endocrinol 18:103. https://doi.org/10.1186/s12958-020-00660-6. (PMID: 10.1186/s12958-020-00660-6331269017599102)
Wu H, Chen S, Li A et al (2021) LncRNA expression profiles in systemic lupus erythematosus and rheumatoid arthritis: emerging biomarkers and therapeutic targets. Front Immunol. https://doi.org/10.3389/fimmu.2021.792884. (PMID: 10.3389/fimmu.2021.792884351979648750066)
Zhang S, Jin R, Li B (2021) Serum NT-proBNP and TUG1 as novel biomarkers for elderly hypertensive patients with heart failure with preserved ejection fraction. Exp Ther Med 21:446. https://doi.org/10.3892/etm.2021.9874. (PMID: 10.3892/etm.2021.9874337471827967840)
Shi L, Tian C, Sun L et al (2018) The lncRNA TUG1/miR-145-5p/FGF10 regulates proliferation and migration in VSMCs of hypertension. Biochem Biophys Res Commun 501:688–695. https://doi.org/10.1016/j.bbrc.2018.05.049. (PMID: 10.1016/j.bbrc.2018.05.04929758198)
Yang L, Liang H, Shen L et al (2019) LncRNA TUG1 involves in the pulmonary vascular remodeling in mice with hypoxic pulmonary hypertension via the microRNA-374c-mediated Foxc1. Life Sci 237:116769. https://doi.org/10.1016/j.lfs.2019.116769. (PMID: 10.1016/j.lfs.2019.11676931422096)
Lv Z, Jiang R, Hu X et al (2021) Dysregulated lncRNA TUG1 in different pulmonary artery cells under hypoxia. Ann Transl Med 9:879–879. https://doi.org/10.21037/atm-21-2040. (PMID: 10.21037/atm-21-2040341645138184498)
Wang S, Cao W, Gao S et al (2019) TUG1 regulates pulmonary arterial smooth muscle cell proliferation in pulmonary arterial hypertension. Can J Cardiol 35:1534–1545. https://doi.org/10.1016/j.cjca.2019.07.630. (PMID: 10.1016/j.cjca.2019.07.63031679623)
Zhang J, Zhang Y, Gao J et al (2021) Long noncoding RNA TUG1 promotes angiotensin II-induced renal fibrosis by binding to mineralocorticoid receptor and negatively regulating MicroR-29b-3p. Hypertension 78:693–705. https://doi.org/10.1161/HYPERTENSIONAHA.120.16395. (PMID: 10.1161/HYPERTENSIONAHA.120.1639534333990)
فهرسة مساهمة: Keywords: Cardiovascular diseases; Genetic factors; Non-coding RNA; lncRNA ANRIL; lncRNA H19; lncRNA TUG1
المشرفين على المادة: 0 (RNA, Long Noncoding)
0 (CDKN2B antisense RNA, human)
0 (H19 long non-coding RNA)
0 (TUG1 long noncoding RNA, human)
تواريخ الأحداث: Date Created: 20231228 Date Completed: 20240214 Latest Revision: 20240214
رمز التحديث: 20240215
DOI: 10.1007/s11033-023-09007-x
PMID: 38155319
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-4978
DOI:10.1007/s11033-023-09007-x