دورية أكاديمية

Mitigating slice cross-talk in multi-slice multi-echo spin echo T 2 mapping.

التفاصيل البيبلوغرافية
العنوان: Mitigating slice cross-talk in multi-slice multi-echo spin echo T 2 mapping.
المؤلفون: Brui EA; School of Physics and Engineering, ITMO University, Saint-Petersburg, Russia., Badrieva Z; School of Physics and Engineering, ITMO University, Saint-Petersburg, Russia., de Mayenne CA; Paris Science et Lettres, E'cole Supe'rieure de Physique et de Chimie Industrielle de la ville de Paris, Paris, France., Rapacchi S; Centre de Résonance Magnétique Biologique et Médicale, Aix-Marseille Universite, CNRS, Marseille, France., Troalen T; Siemens Healthcare SAS, Courbevoie, France., Bendahan D; Centre de Résonance Magnétique Biologique et Médicale, Aix-Marseille Universite, CNRS, Marseille, France.
المصدر: Magnetic resonance in medicine [Magn Reson Med] 2024 May; Vol. 91 (5), pp. 2089-2103. Date of Electronic Publication: 2023 Dec 29.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 8505245 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1522-2594 (Electronic) Linking ISSN: 07403194 NLM ISO Abbreviation: Magn Reson Med Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : New York, NY : Wiley
Original Publication: San Diego : Academic Press,
مواضيع طبية MeSH: Magnetic Resonance Imaging*/methods , Image Processing, Computer-Assisted*/methods, Reproducibility of Results ; Phantoms, Imaging ; Brain/diagnostic imaging
مستخلص: Purpose: To investigate whether a T 2 inter-slice variation could occur when a multi-slice multi-echo spin echo (MESE) sequence is used for image acquisition and to propose an enhanced method for reconstructing T 2 maps that can effectively address and correct these variations.
Methods: Bloch simulations were performed accounting for the direct saturation effect to evaluate magnetization changes in multi-slice 2D MESE sequence. Experimental phantom scans were performed to validate these simulations. An improved version of the dictionary-based reconstruction approach was proposed, enabling the creation of a multi-slice dictionary of echo modulation curves (EMC). The corresponding method has been assayed considering inter-slice T 2 variation with phantoms and in lower leg.
Results: Experimental and numerical study illustrate that direct saturation leads to a bias of EMCs. This bias during the T 2 maps reconstructions using original single-slice EMC-dictionary method led to inter-slice T 2 variation of 2.03% in average coefficient of variation (CV) in agarose phantoms, and up to 2.8% in vivo (for TR = 2 s, slice gap = 0%). A reduction of CV was observed when increasing the gap up to 100% (0.36% in phantoms, and up to 1.5% in vivo) or increasing TR up to 4 s (0.76% in phantoms, and up to 1.9% in vivo). Matching the multi-slice experimental data with multi-slice dictionaries provided a reduced CV of 0.54% in phantoms and up to 2.3% in vivo.
Conclusion: T 2 values quantified from multi-slice MESE images using single-slice dictionaries are biased. A dedicated multi-slice EMC method providing the appropriate dictionaries can reduce the inter-slice T 2 variation.
(© 2023 International Society for Magnetic Resonance in Medicine.)
References: Tahir E, Sinn M, Bohnen S, et al. Acute versus chronic myocardial infarction: diagnostic accuracy of quantitative native T1 and T2 mapping versus assessment of edema on standard T2-weighted cardiovascular MR images for differentiation. Radiology. 2017;285:83-91.
Kim HK, Laor T, Horn PS, Racadio JM, Wong B, Dardzinski BJ. T2 mapping in Duchenne muscular dystrophy: distribution of disease activity and correlation with clinical assessments. Radiology. 2010;255:899-908.
David-Vaudey E, Ghosh S, Ries M, Majumdar S. T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging. 2004;22:673-682.
Majumdar S, Orphanoudakis SC, Gmitro A, O'Donnell M, Gore JC. Errors in the measurements of T2 using multiple-echo MRI techniques. I. Effects of radiofrequency pulse imperfections. Magn Reson Med. 1986;3:397-417.
Radunsky D, Blumenfeld-Katzir T, Volovyk O, et al. Analysis of magnetization transfer (MT) influence on quantitative mapping of T2 relaxation time. Magn Reson Med. 2019;82:145-158.
Maier CF, Tan SG, Hariharan H, Potter HG. T2 quantitation of articular cartilage at 1.5 T. J Magn Reson Imaging. 2003;17:358-364.
Nöth U, Shrestha M, Schüre JR, Deichmann R. Quantitative in vivo T2 mapping using fast spin echo techniques-a linear correction procedure. Neuroimage. 2017;157:476-485.
McPhee KC, Wilman AH. T2 quantification from only proton density and T2-weighted MRI by modelling actual refocusing angles. Neuroimage. 2015;118:642-650.
Ben-Eliezer N, Sodickson DK, Block KT. Rapid and accurate T2 mapping from multi-spin-echo data using Bloch-simulation-based reconstruction. Magn Reson Med. 2015;73:809-817.
Lebel RM, Wilman AH. Transverse relaxometry with stimulated echo compensation. Magn Reson Med. 2010;64:1005-1014.
Sveinsson B, Chaudhari AS, Gold GE, Hargreaves BA. A simple analytic method for estimating T2 in the knee from DESS. Magn Reson Med. 2017;38:63-70.
Welsch GH, Scheffler K, Mamisch TC, et al. Rapid estimation of cartilage T2 based on double echo at steady state (DESS) with 3 Tesla. Magn Reson Med. 2009;62:544-549.
Staroswiecki E, Granlund KL, Alley MT, Gold GE, Hargreaves BA. Simultaneous estimation of T2 and apparent diffusion coefficient in human articular cartilage in vivo with a modified three-dimensional double echo steady state (DESS) sequence at 3 T. Magn Reson Med. 2012;67:1086-1096.
Gracien RM, Maiworm M, Brüche N, et al. How stable is quantitative MRI? - Assessment of intra-and inter-scanner-model reproducibility using identical acquisition sequences and data analysis programs. Neuroimage. 2020;207:116364.
Chianca V, Albano D, Cuocolo R, et al. T2 mapping of the trapeziometacarpal joint and triangular fibrocartilage complex: a feasibility and reproducibility study at 1.5 T. Radiol Med. 2020;125:306-312.
Hagiwara A, Hori M, Cohen-Adad J, et al. Linearity, bias, intrascanner repeatability, and interscanner reproducibility of quantitative multidynamic multiecho sequence for rapid simultaneous relaxometry at 3 T: a validation study with a standardized phantom and healthy controls. Invest Radiol. 2019;54:39-47.
Wu PH, Cheng CC, Wu ML, Chao TC, Chung HW, Huang TY. Effects of RF profile on precision of quantitative T2 mapping using dual-echo steady-state acquisition. Magn Reson Imaging. 2014;32:102-106.
Watanabe A, Boesch C, Obata T, Anderson SE. Effect of multislice acquisition on T1 and T2 measurements of articular cartilage at 3T. J Magn Reson Imaging. 2007;26:109-117.
Harrison R, Bronskill MJ, HRM. Magnetization transfer and T2 relaxation components in tissue. Magn Reson Med. 1995;33:490-496.
Hargreaves B. Bloch Equation Simulator. Available at: http://mrsrl.stanford.edu/∼brian/blochsim. Accessed June 9, 2023.
Brui EA, Rapacchi S, Bendahan D, Andreychenko AE. Comparative analysis of SINC-shaped and SLR pulses performance for contiguous multi-slice fast spin-echo imaging using metamaterial-based MRI. MAGMA. 2021;34:929-938.
Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004;52:141-146.
Kremelberg D. Practical Statistics: A Quick and Easy Guide to IBM® SPSS® Statistics, STATA, and Other Statistical Software. SAGE Publications; 2011.
Rangwala N, Zhou XJ. Reduction of fast spin echo cusp artifact using a slice-tilting gradient. Magn Reson Med. 2010;64:220-228.
Brui EA, de Mayenne CA, Rapacchi S, Troalen T, Vilmen C, Bendahan D. T2 mapping for contiguous multi-slice 3D volume: a new EMC-based technique taking into account slice cross-talk effects. In Proceedings of the Joint Annual Meeting ISMRM-ESMRMB & ISMRT 31st Annual Meeting, London, UK, 2022. p. 2701.
Badrieva Z, Brui E, de Manenne CA, Rapacchi S, Troalen T, Bendahan D. Effect of multi-slice MESE acquisition on inter-slice T2 variability. 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). IEEE; 2022:570-574.
Raddi A, Klose U. Optimized shinnar-le roux RF 180° pulses in fast spin-echo measurements. J Magn Reson Imaging. 1999;9:613-620.
Constable RT, Anderson AW, Zhong J, Gore JC. Factors influencing contrast in fast spin-echo MR imaging. Magn Reson Imaging. 1992;10:497-511.
Perlman O, Herz K, Zaiss M, Cohen O, Rosen MS, Farrar CT. CEST MR-fingerprinting: practical considerations and insights for acquisition schedule design and improved reconstruction. Magn Reson Med. 2020;83:462-478.
Sharafi A, Chang G, Regatte RR. Bi-component T1ρ and T2 relaxation mapping of skeletal muscle in-vivo. Sci Rep. 2017;7:14115.
Pai A, Li X, Majumdar S. A comparative study at 3 T of sequence dependence of T2 quantitation in the knee. Magn Reson Imaging. 2008;26:1215-1220.
Wokke BH, Van Den Bergen JC, Hooijmans MT, Verschuuren JJ, Niks EH, Kan HE. T2 relaxation times are increased in skeletal muscle of DMD but not BMD patients. Muscle Nerve. 2016;53:38-43.
Qian W, Chen W, Xu XQ, Wu FY. T2 mapping of the extraocular muscles in healthy volunteers: preliminary research on scan-rescan and observer-observer reproducibility. Acta Radiol. 2020;61:804-812.
Hayter CL, Gold SL, Potter HG. Magnetic resonance imaging of the wrist: bone and cartilage injury. J Magn Reson Imaging. 2013;37:1005-1019.
Haims AH, Moore AE, Schweitzer ME, et al. MRI in the diagnosis of cartilage injury in the wrist. Am J Roentgenol. 2004;182:1267-1270.
Lee KR, Ko SY, Choi GM. Quantitative T2 mapping of articular cartilage of the glenohumeral joint at 3.0 T in rotator cuff disease patients: the evaluation of degenerative change of cartilage. Investigative. Magn Reson Imaging. 2019;23:228-240.
Cole WC, Leblanc AD, Jhingran SG. The origin of biexponential T2 relaxation in muscle water. Magn Reson Med. 1993;29:19-24.
معلومات مُعتمدة: Excellence Initiative of Aix-Marseille University-A*MIDEX, a French "Investissements d'Avenir" Program through the Multiwave Chair of Medical Imaging; French Embassy in Russia (Metchnikov Program); HШ2359.2022.4 The Ministry of Science and Higher Education of the Russian Federation, grant for Scientific School No; 075-15-2021-592 The Ministry of Science and Higher Education of the Russian Federation Project No
فهرسة مساهمة: Keywords: T2 mapping; direct saturation effect; echo modulation curve; inter-slice T2 variation; quantitative MRI; slice cross-talk
تواريخ الأحداث: Date Created: 20231229 Date Completed: 20240320 Latest Revision: 20240320
رمز التحديث: 20240320
DOI: 10.1002/mrm.29987
PMID: 38156822
قاعدة البيانات: MEDLINE
الوصف
تدمد:1522-2594
DOI:10.1002/mrm.29987