دورية أكاديمية

PDE5 inhibitors: breaking new grounds in the treatment of COVID-19.

التفاصيل البيبلوغرافية
العنوان: PDE5 inhibitors: breaking new grounds in the treatment of COVID-19.
المؤلفون: Varghese R; Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India.; Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India.; Homi Bhabha National Institute, Mumbai, Maharashtra, India., Digholkar G; Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India., Karsiya J; River Route Creative Group LLP, Mumbai, Maharashtra, India., Salvi S; Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India., Shah J; Department of Pulmonology, Saifee Hospital, Girgaon, Mumbai, Maharashtra, India., Kumar D; Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India.; Department of Entomology, University of California, Davis, CA, USA.; UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA., Sharma R; Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
المصدر: Drug metabolism and personalized therapy [Drug Metab Pers Ther] 2023 Aug 24; Vol. 38 (4), pp. 295-307. Date of Electronic Publication: 2023 Aug 24 (Print Publication: 2023).
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: De Gruyter Country of Publication: Germany NLM ID: 101653409 Publication Model: eCollection Cited Medium: Internet ISSN: 2363-8915 (Electronic) Linking ISSN: 23638915 NLM ISO Abbreviation: Drug Metab Pers Ther Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : De Gruyter, [2015]-
مواضيع طبية MeSH: Phosphodiesterase 5 Inhibitors*/therapeutic use , COVID-19*, Humans ; Sildenafil Citrate ; Tadalafil ; Vardenafil Dihydrochloride ; Cyclic Nucleotide Phosphodiesterases, Type 5 ; Piperazines/pharmacology ; Imidazoles/adverse effects ; Carbolines/adverse effects ; Purines/adverse effects ; SARS-CoV-2
مستخلص: Introduction: Despite the ever-increasing occurrences of the coronavirus disease (COVID-19) cases around the world, very few medications have been validated in the clinical trials to combat COVID-19. Although several vaccines have been developed in the past quarter, the time elapsed between deployment and administration remains a major impediment.
Content: Repurposing of pre-approved drugs, such as phosphodiesterase 5 (PDE5) inhibitors, could be a game-changer while lessening the burden on the current healthcare system. Repurposing and developing phosphodiesterase 5 (PDE5) inhibitors could extrapolate their utility to combat the SARS-CoV-2 infection, and potentially aid in the management of the symptoms associated with its newer variants such as BF.7, BQ.1, BQ.1.1, XBB.1.5, and XBB.1.16.
Summary: Administration of PDE5 inhibitors via the oral and intravenous route demonstrates other potential off-label benefits, including anti-apoptotic, anti-inflammatory, antioxidant, and immunomodulatory effects, by intercepting several pathways. These effects can not only be of clinical importance in mild-to-moderate, but also moderate-to-severe SARS-CoV-2 infections. This article explores the various mechanisms by which PDE5 inhibitors alleviates the symptoms associated with COVID-19 as well as well as highlights recent studies and findings.
Outlook: These benefits of PDE5 inhibitors make it a potential drug in the physicians' armamentarium in alleviating symptoms associated with SARS-CoV-2 infection. However, adequate clinical studies must be instituted to eliminate any untoward adverse events.
(© 2023 Walter de Gruyter GmbH, Berlin/Boston.)
References: Varghese, R, Salvi, S, Sood, P, Karsiya, J, Kumar, D. Carbon nanotubes in COVID-19: a critical review and prospects. Colloid Interface Sci Commun 2022;46:100544. https://doi.org/10.1016/j.colcom.2021.100544 . (PMID: 10.1016/j.colcom.2021.100544)
Wang, C, Wang, Z, Wang, G, Lau, JYN, Zhang, K, Li, W. COVID-19 in early 2021: current status and looking forward. Signal Transduct Targeted Ther 2021;6:114. https://doi.org/10.1038/s41392-021-00527-1 . (PMID: 10.1038/s41392-021-00527-1)
Ahn, DG, Shin, HJ, Kim, MH, Lee, S, Kim, HS, Myoung, J, et al.. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J Microbiol Biotechnol 2020;30:313–24. https://doi.org/10.4014/jmb.2003.03011 . (PMID: 10.4014/jmb.2003.03011)
Dhama, K, Khan, S, Tiwari, R, Sircar, S, Bhat, S, Malik, YS, et al.. Coronavirus disease 2019–COVID-19. Clin Microbiol Rev 2020;33:e00028–20. https://doi.org/10.1128/cmr.00028-20 . (PMID: 10.1128/cmr.00028-20)
de Lamballerie, X. Of chloroquine and COVID-19. Antivir Res 2020;177:104762. https://doi.org/10.1016/j.antiviral.2020.104762 . (PMID: 10.1016/j.antiviral.2020.104762)
Elavarasi, A, Prasad, M, Seth, T, Sahoo, RK, Madan, K, Nischal, N, et al.. Chloroquine and hydroxychloroquine for the treatment of COVID-19: a systematic review and meta-analysis. J Gen Intern Med 2020;35:1–7. https://doi.org/10.1007/s11606-020-06146-w . (PMID: 10.1007/s11606-020-06146-w)
Ibáñez, S, Martínez, O, Valenzuela, F, Silva, F, Valenzuela, O. Hydroxychloroquine and chloroquine in COVID-19: should they be used as standard therapy? Clin Rheumatol 2020;39:2461–5. https://doi.org/10.1007/s10067-020-05202-4 . (PMID: 10.1007/s10067-020-05202-4)
Meo, SA, Klonoff, DC, Akram, J. Efficacy of chloroquine and hydroxychloroquine in the treatment of COVID-19. Eur Rev Med Pharmacol Sci 2020;24:4539–47. https://doi.org/10.26355/eurrev_202004_21038 . (PMID: 10.26355/eurrev_202004_21038)
Ghasemnejad-Berenji, M, Pashapour, S. Favipiravir and COVID-19: a simplified summary. Drug Res 2021;71:166–70. https://doi.org/10.1055/a-1296-7935 . (PMID: 10.1055/a-1296-7935)
Guan, W, Lan, W, Zhang, J, Zhao, S, Ou, J, Wu, X, et al.. COVID-19: antiviral agents, antibody development and traditional Chinese medicine. Virol Sin 2020;1–14:685–98. https://doi.org/10.1007/s12250-020-00297-0 . (PMID: 10.1007/s12250-020-00297-0)
Hashemian, SMR, Pourhanifeh, MH, Hamblin, MR, Shahrzad, MK, Mirzaei, H. RdRp inhibitors and COVID-19: is molnupiravir a good option? Biomed Pharmacother 2022;146:112517. https://doi.org/10.1016/j.biopha.2021.112517 . (PMID: 10.1016/j.biopha.2021.112517)
Adams, KK, Baker, WL, Sobieraj, DM. myth busters: dietary supplements and COVID-19. Ann Pharmacother 2020;54:820–6. https://doi.org/10.1177/1060028020928052 . (PMID: 10.1177/1060028020928052)
Bae, M, Kim, H. The role of vitamin C, vitamin D, and selenium in immune system against COVID-19. Molecules 2020;25:5346. https://doi.org/10.3390/molecules25225346 . (PMID: 10.3390/molecules25225346)
Mercola, J, Grant, WB, Wagner, CL. Evidence regarding vitamin D and risk of COVID-19 and its severity. Nutrients 2020;12:3361. https://doi.org/10.3390/nu12113361 . (PMID: 10.3390/nu12113361)
Mrityunjaya, M, Pavithra, V, Neelam, R, Janhavi, P, Halami, PM, Ravindra, PV. Immune-boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19. Front Immunol 2020;11:570122. https://doi.org/10.3389/fimmu.2020.570122 . (PMID: 10.3389/fimmu.2020.570122)
Halpin, DMG, Singh, D, Hadfield, RM. Inhaled corticosteroids and COVID-19: a systematic review and clinical perspective. Eur Respir J 2020;55:2001009. https://doi.org/10.1183/13993003.01009-2020 . (PMID: 10.1183/13993003.01009-2020)
Lipworth, B, Kuo, CR, Lipworth, S, Chan, R. Inhaled corticosteroids and COVID-19. Am J Respir Crit Care Med 2020;202:899–900. https://doi.org/10.1164/rccm.202005-2000le . (PMID: 10.1164/rccm.202005-2000le)
Matthay, MA, Wick, KD. Corticosteroids, COVID-19 pneumonia, and acute respiratory distress syndrome. J Clin Invest 2020;130:6218–21. https://doi.org/10.1172/jci143331 . (PMID: 10.1172/jci143331)
Prescott, HC, Rice, TW. Corticosteroids in COVID-19 ARDS: evidence and hope during the pandemic. JAMA 2020;324:1292–5. https://doi.org/10.1001/jama.2020.16747 . (PMID: 10.1001/jama.2020.16747)
Reinert, JP, Reinert, NJ. The role of phosphodiesterase-5 inhibitors in COVID-19: an exploration of literature from similar pathologies. J Intensive Care Med 2021;36:3–8. https://doi.org/10.1177/0885066620957951 . (PMID: 10.1177/0885066620957951)
Salinas, M, Salinas, R. Corticosteroids treatment for COVID-19. Rev Med Chile 2020;148:571–2. https://doi.org/10.4067/S0034-98872020000500571 . (PMID: 10.4067/S0034-98872020000500571)
Rojas, M, Rodríguez, Y, Monsalve, DM, Acosta-Ampudia, Y, Camacho, B, Gallo, JE, et al.. Convalescent plasma in Covid-19: possible mechanisms of action. Autoimmun Rev 2020;19:102554. https://doi.org/10.1016/j.autrev.2020.102554 . (PMID: 10.1016/j.autrev.2020.102554)
Duan, K, Liu, B, Li, C, Zhang, H, Yu, T, Qu, J, et al.. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 2020;117:9490–6. https://doi.org/10.1073/pnas.2004168117 . (PMID: 10.1073/pnas.2004168117)
Altuntas, F, Ata, N, Yigenoglu, TN, Bascı, S, Dal, MS, Korkmaz, S, et al.. Convalescent plasma therapy in patients with COVID-19. Transfus Apher Sci 2021;60:102955. https://doi.org/10.1016/j.transci.2020.102955 . (PMID: 10.1016/j.transci.2020.102955)
Chen, L, Xiong, J, Bao, L, Shi, Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020;20:398–400. https://doi.org/10.1016/s1473-3099(20)30141-9 . (PMID: 10.1016/s1473-3099(20)30141-9)
Wood, EM, Estcourt, LJ, McQuilten, ZK. How should we use convalescent plasma therapies for the management of COVID-19? Blood. J Am Soc Hematol 2021;137:1573–81. https://doi.org/10.1182/blood.2020008903 . (PMID: 10.1182/blood.2020008903)
Brown, BL, McCullough, J. Treatment for emerging viruses: convalescent plasma and COVID-19. Transfus Apher Sci 2020;59:102790. https://doi.org/10.1016/j.transci.2020.102790 . (PMID: 10.1016/j.transci.2020.102790)
Ahsan, W, Javed, S, Al Bratty, M, Alhazmi, HA, Najmi, A. Treatment of SARS-CoV-2: how far have we reached? Drug Discov Ther 2020;14:67–72. https://doi.org/10.5582/ddt.2020.03008 . (PMID: 10.5582/ddt.2020.03008)
Huang, C, Wang, Y, Li, X, Ren, L, Zhao, J, Hu, Y, et al.. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506. https://doi.org/10.1016/s0140-6736(20)30183-5 . (PMID: 10.1016/s0140-6736(20)30183-5)
Mostafa, T. Could oral phosphodiesterase 5 inhibitors have a potential adjuvant role in combating COVID-19 infection? Sex Med Rev 2021;9:15–22. https://doi.org/10.1016/j.sxmr.2020.08.006 . (PMID: 10.1016/j.sxmr.2020.08.006)
Varghese, R, Salvi, S, Sood, P, Karsiya, J, Kumar, D. Carbon nanotubes in COVID-19: a critical review and prospects. Colloids Interface Sci Commun 2022;46:100544. https://doi.org/10.1016/j.colcom.2021.100544 . (PMID: 10.1016/j.colcom.2021.100544)
Joost, W, Rhodes, WA, Cheng, AC, Peacock, SJ, Prescott, HC. Pathophysiology transmission diagnosis and treatment of coronavirus disease 2019 (COVID-19). AMA 2020;324:782–93.
Ganyani, T, Kremer, C, Chen, D, Torneri, A, Faes, C, Wallinga, J, et al.. Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020. Euro Surveill 2020;25:2000257. https://doi.org/10.2807/1560-7917.es.2020.25.17.2000257 . (PMID: 10.2807/1560-7917.es.2020.25.17.2000257)
Mao, R, Qiu, Y, He, JS, Tan, JY, Li, XH, Liang, J, et al.. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2020;5:667–78. https://doi.org/10.1016/s2468-1253(20)30126-6 . (PMID: 10.1016/s2468-1253(20)30126-6)
Levi, M, Thachil, J, Iba, T, Levy, JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol 2020;7:e438–40. https://doi.org/10.1016/s2352-3026(20)30145-9 . (PMID: 10.1016/s2352-3026(20)30145-9)
Chen, YT, Shao, SC, Hsu, CK, Wu, IW, Hung, MJ, Chen, YC. Incidence of acute kidney injury in COVID-19 infection: a systematic review and meta-analysis. Crit Care 2020;24:1–4. https://doi.org/10.1186/s13054-020-03009-y . (PMID: 10.1186/s13054-020-03009-y)
Long, B, Brady, WJ, Koyfman, A, Gottlieb, M. Cardiovascular complications in COVID-19. The Am J Emerg Med 2020;38:1504–7.
Mao, L, Jin, H, Wang, M, Hu, Y, Chen, S, He, Q, et al.. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020;77:683–90. https://doi.org/10.1001/jamaneurol.2020.1127 . (PMID: 10.1001/jamaneurol.2020.1127)
Middeldorp, S, Coppens, M, van Haaps, TF, Foppen, M, Vlaar, AP, Müller, MCA, et al.. Incidence of venous thromboembolism in hospitalized patients with COVID‐19. J Thromb Haemostasis 2020;18:1995–2002. https://doi.org/10.1111/jth.14888 . (PMID: 10.1111/jth.14888)
Rodriguez-Morales, AJ, Cardona-Ospina, JA, Gutiérrez-Ocampo, E, Villamizar-Peña, R, Holguin-Rivera, Y, Escalera-Antezana, JP, et al.. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Trav Med Infect Dis 2020;34:101623. https://doi.org/10.1016/j.tmaid.2020.101623 . (PMID: 10.1016/j.tmaid.2020.101623)
Akhvlediani, ND, Matyukhov, IP. Current role of sildenafil in the management of erectile dysfunction. Urologiia 2018;142–6. https://doi.org/10.18565/urology.2018.2.142-146 . (PMID: 10.18565/urology.2018.2.142-146)
Hassan, A, El‐Hadidy, M, El‐Deeck, BS, Mostafa, T. Couple satisfaction to different therapeutic modalities for organic erectile dysfunction. J Sex Med 2008;5:2381–91. https://doi.org/10.1111/j.1743-6109.2007.00697.x . (PMID: 10.1111/j.1743-6109.2007.00697.x)
Goldstein, I, Burnett, AL, Rosen, RC, Park, PW, Stecher, VJ. The serendipitous story of sildenafil: an unexpected oral therapy for erectile dysfunction. Sex Med Rev 2019;7:115–28. https://doi.org/10.1016/j.sxmr.2018.06.005 . (PMID: 10.1016/j.sxmr.2018.06.005)
Goldstein, I, Tseng, LJ, Creanga, D, Stecher, V, Kaminetsky, JC. Efficacy and safety of sildenafil by age in men with erectile dysfunction. J Sex Med 2016;13:852–9. https://doi.org/10.1016/j.jsxm.2016.02.166 . (PMID: 10.1016/j.jsxm.2016.02.166)
Yafi, FA, Sharlip, ID, Becher, EF. Update on the safety of phosphodiesterase type 5 inhibitors for the treatment of erectile dysfunction. Sex Med Rev 2018;6:242–52. https://doi.org/10.1016/j.sxmr.2017.08.001 . (PMID: 10.1016/j.sxmr.2017.08.001)
Dhaliwal, A, Gupta, M. PDE5 inhibitors . Treasure Island, FL: StatPearls; 2021.
Andersson, K. PDE5 inhibitors–pharmacology and clinical applications 20 years after sildenafil discovery. Br J Pharmacol 2018;175:2554–65. https://doi.org/10.1111/bph.14205 . (PMID: 10.1111/bph.14205)
Koon, CS, Sidi, H, Kumar, J, Xi, OW, Das, S, Hatta, MH, et al.. The phosphodiasterase 5-inhibitors (PDE-5i) for erectile dysfunction (ED): a therapeutic challenge for psychiatrists. Curr Drug Target 2018;19:1366–77. https://doi.org/10.2174/1389450118666170215164747 . (PMID: 10.2174/1389450118666170215164747)
Porst, H, Hell-Momeni, K, Büttner, H. Chronic PDE-5 inhibition in patients with erectile dysfunction–a treatment approach using Tadalafil once-daily. Expet Opin Pharmacother 2012;13:1481–94. https://doi.org/10.1517/14656566.2012.693162 . (PMID: 10.1517/14656566.2012.693162)
Bai, Y, Pu, C, Han, P, Li, J, Yuan, H, Tang, Y, et al.. Selective serotonin reuptake inhibitors plus phosphodiesterase-5 inhibitors for premature ejaculation: a systematic review and meta-analysis. Urology 2015;86:758–65. https://doi.org/10.1016/j.urology.2015.06.045 . (PMID: 10.1016/j.urology.2015.06.045)
Burton, TD, Liday, C. The comparison of combination SSRI and PDE-5 inhibitor therapy to SSRI monotherapy in men with premature ejaculation. Ann Pharmacother 2011;45:1000–4. https://doi.org/10.1345/aph.1q008 . (PMID: 10.1345/aph.1q008)
Deng, H, Liu, D, Mao, X, Lan, X, Liu, H, Li, G. Phosphodiesterase-5 inhibitors and vacuum erection device for penile rehabilitation after laparoscopic nerve-preserving radical proctectomy for rectal cancer: a prospective controlled trial. Am J Men’s Health 2017;11:641–6. https://doi.org/10.1177/1557988316665084 . (PMID: 10.1177/1557988316665084)
Montani, D, Chaumais, MC, Guignabert, C, Günther, S, Girerd, B, Jaïs, X, et al.. Targeted therapies in pulmonary arterial hypertension. Pharmacol Ther 2014;141:172–91. https://doi.org/10.1016/j.pharmthera.2013.10.002 . (PMID: 10.1016/j.pharmthera.2013.10.002)
Zimmermann, GS, von Wulffen, W, Huppmann, P, Meis, T, Ihle, F, Geiseler, J, et al.. Haemodynamic changes in pulmonary hypertension in patients with interstitial lung disease treated with PDE‐5 inhibitors. Respirology 2014;19:700–6. https://doi.org/10.1111/resp.12294 . (PMID: 10.1111/resp.12294)
Ala, M, Mohammad Jafari, R, Dehpour, AR. Sildenafil beyond erectile dysfunction and pulmonary arterial hypertension: thinking about new indications. Fundam Clin Pharmacol 2021;35:235–59. https://doi.org/10.1111/fcp.12633 . (PMID: 10.1111/fcp.12633)
Tzoumas, N, Farrah, TE, Dhaun, N, Webb, DJ. Established and emerging therapeutic uses of PDE type 5 inhibitors in cardiovascular disease. Br J Pharmacol 2020;177:5467–88. https://doi.org/10.1111/bph.14920 . (PMID: 10.1111/bph.14920)
Bates, MG, Thompson, AA, Baillie, JK. Phosphodiesterase type 5 inhibitors in the treatment and prevention of high altitude pulmonary edema. Curr Opin Invest Drugs 2007;8:226–31.
Xu, Y, Liu, Y, Liu, J, Qian, G. Meta-analysis of clinical efficacy of sildenafil, a phosphodiesterase type-5 inhibitor on high altitude hypoxia and its complications. High Alt Med Biol 2014;15:46–51. https://doi.org/10.1089/ham.2013.1110 . (PMID: 10.1089/ham.2013.1110)
Lin, CS, Albersen, M, Xin, Z, Namiki, M, Muller, D, Lue, TF. Phosphodiesterase-5 expression and function in the lower urinary tract: a critical review. Urology 2013;81:480–7. https://doi.org/10.1016/j.urology.2012.11.028 . (PMID: 10.1016/j.urology.2012.11.028)
Lythgoe, C, McVary, KT. The use of PDE-5 inhibitors in the treatment of lower urinary tract symptoms due to benign prostatic hyperplasia. Curr Urol Rep 2013;14:585–94. https://doi.org/10.1007/s11934-013-0373-2 . (PMID: 10.1007/s11934-013-0373-2)
Munshi, A, Das, S. Genetic understanding of stroke treatment: potential role for phosphodiesterase inhibitors. Phosphodiesterases CNS Func Dis 2017;17:445–61. https://doi.org/10.1007/978-3-319-58811-7_16 . (PMID: 10.1007/978-3-319-58811-7_16)
Pauls, MMH, Moynihan, B, Barrick, TR, Kruuse, C, Madigan, JB, Hainsworth, AH, et al.. The effect of phosphodiesterase-5 inhibitors on cerebral blood flow in humans: a systematic review. J Cerebr Blood Flow Metabol 2018;38:189–203. https://doi.org/10.1177/0271678x17747177 . (PMID: 10.1177/0271678x17747177)
Zhang, RL, Zhang, ZG, Chopp, M. Targeting nitric oxide in the subacute restorative treatment of ischemic stroke. Expet Opin Invest Drugs 2013;22:843–51. https://doi.org/10.1517/13543784.2013.793672 . (PMID: 10.1517/13543784.2013.793672)
Al-Ameri, H, Kloner, RA. Erectile dysfunction and heart failure: the role of phosphodiesterase type 5 inhibitors. Int J Impot Res 2009;21:149–57. https://doi.org/10.1038/ijir.2009.11 . (PMID: 10.1038/ijir.2009.11)
Emdin, M, Aimo, A, Castiglione, V, Vergaro, G, Georgiopoulos, G, Saccaro, LF, et al.. Targeting cyclic guanosine monophosphate to treat heart failure: JACC review topic of the week. J Am Coll Cardiol 2020;76:1795–807. https://doi.org/10.1016/j.jacc.2020.08.031 . (PMID: 10.1016/j.jacc.2020.08.031)
Bhogal, S, Khraisha, O, Al Madani, M, Treece, J, Baumrucker, SJ, Paul, TK. Sildenafil for pulmonary arterial hypertension. Am J Therapeut 2019;26:e520–6. https://doi.org/10.1097/mjt.0000000000000766 . (PMID: 10.1097/mjt.0000000000000766)
Montani, D, Chaumais, MC, Savale, L, Natali, D, Price, LC, Jaïs, X, et al.. Phosphodiesterase type 5 inhibitors in pulmonary arterial hypertension. Adv Ther 2009;26:813–25. https://doi.org/10.1007/s12325-009-0064-z . (PMID: 10.1007/s12325-009-0064-z)
Fang, L, Radovits, T, Szabó, G, Mózes, MM, Rosivall, L, Kökény, G. Selective phosphodiesterase-5 (PDE-5) inhibitor vardenafil ameliorates renal damage in type 1 diabetic rats by restoring cyclic 3′, 5′ guanosine monophosphate (cGMP) level in podocytes. Nephrol Dial Transplant 2013;28:1751–61. https://doi.org/10.1093/ndt/gfs391 . (PMID: 10.1093/ndt/gfs391)
Lau, DH, Mikhailidis, DP, Thompson, CS. The effect of vardenafil (a PDE type 5 inhibitor) on renal function in the diabetic rabbit: a pilot study. Vivo 2007;21:851–4.
Thompson, CS. Diabetic nephropathy: treatment with phosphodiesterase type 5 inhibitors. World J Diabetes 2013;4:124. https://doi.org/10.4239/wjd.v4.i4.124 . (PMID: 10.4239/wjd.v4.i4.124)
Hong, JH, Kwon, YS, Kim, IY. Pharmacodynamics, pharmacokinetics and clinical efficacy of phosphodiesterase-5 inhibitors. Expet Opin Drug Metabol Toxicol 2017;13:183–92. https://doi.org/10.1080/17425255.2017.1244265 . (PMID: 10.1080/17425255.2017.1244265)
Mostafa, T. Oral phosphodiesterase type 5 inhibitors: nonerectogenic beneficial uses. J Sex Med 2008;5:2502–18. https://doi.org/10.1111/j.1743-6109.2008.00983.x . (PMID: 10.1111/j.1743-6109.2008.00983.x)
Mostafa, T. Useful implications of low-dose long-term use of PDE-5 inhibitors. Sex Med Rev 2016;4:270–84. https://doi.org/10.1016/j.sxmr.2015.12.005 . (PMID: 10.1016/j.sxmr.2015.12.005)
Mostafa, T. Non-sexual implications of phosphodiesterase type 5 inhibitors. Sex Med Rev 2017;5:170–99. https://doi.org/10.1016/j.sxmr.2016.02.004 . (PMID: 10.1016/j.sxmr.2016.02.004)
Pushpakom, S, Iorio, F, Eyers, PA, Escott, KJ, Hopper, S, Wells, A, et al.. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 2019;18:41–58. https://doi.org/10.1038/nrd.2018.168 . (PMID: 10.1038/nrd.2018.168)
Vesga, LC, Ruiz-Hernández, CA, Alvarez-Jacome, JJ, Duque, JE, Rincon-Orozco, B, Mendez-Sanchez, SC. Repurposing of four drugs as anti-SARS-CoV-2 agents and their interactions with protein targets. Sci Pharm 2022;90:24. https://doi.org/10.3390/scipharm90020024 . (PMID: 10.3390/scipharm90020024)
Yan, C, Kim, D, Aizawa, T, Berk, BC. Functional interplay between angiotensin II and nitric oxide: cyclic GMP as a key mediator. Arterioscler Thromb Vasc Biol 2003;23:26–36. https://doi.org/10.1161/01.atv.0000046231.17365.9d . (PMID: 10.1161/01.atv.0000046231.17365.9d)
Busse, LW, Chow, JH, McCurdy, MT, Khanna, AK. COVID-19 and the RAAS—a potential role for angiotensin II? Crit Care 2020;24:1–4. https://doi.org/10.1186/s13054-020-02862-1 . (PMID: 10.1186/s13054-020-02862-1)
Isidori, AM, Giannetta, E, Pofi, R, Venneri, MA, Gianfrilli, D, Campolo, F, et al.. Targeting the NO‐cGMP‐PDE5 pathway in COVID‐19 infection. The DEDALO project. Andrology 2021;9:33–8. https://doi.org/10.1111/andr.12837 . (PMID: 10.1111/andr.12837)
Shirvaliloo, M. Targeting the SARS-CoV-2 3CLpro and NO/cGMP/PDE5 pathway in COVID-19: a commentary on PDE5 inhibitors. Future Cardiol 2021;17:765–8. https://doi.org/10.2217/fca-2020-0201 . (PMID: 10.2217/fca-2020-0201)
Wu, R, Wang, L, Kuo, HCD, Shannar, A, Peter, R, Chou, PJ, et al.. An update on current therapeutic drugs treating COVID-19. Curr Pharmacol Rep 2020;6:56–70. https://doi.org/10.1007/s40495-020-00216-7 . (PMID: 10.1007/s40495-020-00216-7)
Yang, HM, Jin, S, Jang, H, Kim, JJY, Lee, JE, Kim, JJY, et al.. Sildenafil reduces neointimal hyperplasia after angioplasty and inhibits platelet aggregation via activation of cGMP-dependent protein kinase. Sci Rep 2019;9:1–12. https://doi.org/10.1038/s41598-019-44190-7 . (PMID: 10.1038/s41598-019-44190-7)
Yan, W, Zheng, Y, Zeng, X, He, B, Cheng, W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022;7:26. https://doi.org/10.1038/s41392-022-00884-5 . (PMID: 10.1038/s41392-022-00884-5)
Mario, L, Roberto, M, Marta, L, Teresa, CM, Laura, M. Hypothesis of COVID-19 therapy with sildenafil. Int J Prev Med 2020;11:11. https://doi.org/10.4103/ijpvm.ijpvm_258_20 . (PMID: 10.4103/ijpvm.ijpvm_258_20)
Gong, H, Tai, H, Huang, N, Xiao, P, Mo, C, Wang, X, et al.. Nrf2-SHP cascade-mediated STAT3 inactivation contributes to AMPK-driven protection against endotoxic inflammation. Front Immunol 2020;11:414. https://doi.org/10.3389/fimmu.2020.00414 . (PMID: 10.3389/fimmu.2020.00414)
Nunes, AKS, Raposo, C, Rocha, SWS, de Sousa Barbosa, KP, de Almeida Luna, RL, da Cruz-Hoefling, MA, et al.. Involvement of AMPK, IKβα-NFκB and eNOS in the sildenafil anti-inflammatory mechanism in a demyelination model. Brain Res 2015;1627:119–33. https://doi.org/10.1016/j.brainres.2015.09.008 . (PMID: 10.1016/j.brainres.2015.09.008)
Chu, CM, Cheng, VCC, Hung, IFN, Wong, MML, Chan, KH, Chan, KS, et al.. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 2004;59:252–6. https://doi.org/10.1136/thorax.2003.012658 . (PMID: 10.1136/thorax.2003.012658)
Jin, Z, Du, X, Xu, Y, Deng, Y, Liu, M, Zhao, Y, et al.. Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020;582:289–93. https://doi.org/10.1038/s41586-020-2223-y . (PMID: 10.1038/s41586-020-2223-y)
Qiao, Z, Zhang, H, Ji, HF, Chen, Q. Computational view toward the inhibition of SARS-CoV-2 spike glycoprotein and the 3CL protease. Computation 2020;8:53. https://doi.org/10.3390/computation8020053 . (PMID: 10.3390/computation8020053)
Alexandrov, V, Kirpich, A, Kantidze, O, Gankin, Y. A multi-reference poly-conformational method for in silico design, optimization, and repositioning of pharmaceutical compounds illustrated for selected SARS-CoV-2 ligands. PeerJ 2022;10:e14252. https://doi.org/10.7717/peerj.14252 . (PMID: 10.7717/peerj.14252)
Rapôso, C, de Almeida Luna, RL, Nunes, AKS, Thomé, R, Peixoto, CA. Role of iNOS-NO-cGMP signaling in modulation of inflammatory and myelination processes. Brain Res Bull 2014;104:60–73. https://doi.org/10.1016/j.brainresbull.2014.04.002 . (PMID: 10.1016/j.brainresbull.2014.04.002)
Dalamaga, M, Karampela, I, Mantzoros, CS. Commentary: phosphodiesterase 4 inhibitors as potential adjunct treatment targeting the cytokine storm in COVID-19. Metabolism 2020;109:154282. https://doi.org/10.1016/j.metabol.2020.154282 . (PMID: 10.1016/j.metabol.2020.154282)
Seirafianpour, F, Mozafarpoor, S, Fattahi, N, Sadeghzadeh‐Bazargan, A, Hanifiha, M, Goodarzi, A. Treatment of COVID‐19 with pentoxifylline: could it be a potential adjuvant therapy? Dermatol Ther 2020;33:e13733. https://doi.org/10.1111/dth.13733 . (PMID: 10.1111/dth.13733)
Bornstein, SR, Rubino, F, Khunti, K, Mingrone, G, Hopkins, D, Birkenfeld, AL, et al.. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol 2020;8:546–50. https://doi.org/10.1016/s2213-8587(20)30152-2 . (PMID: 10.1016/s2213-8587(20)30152-2)
Ghosh, A, Joseph, B, Anil, S. Nitric oxide in the management of respiratory consequences in COVID-19: a scoping review of a different treatment approach. Cureus 2022;14:e23852. https://doi.org/10.7759/cureus.23852 . (PMID: 10.7759/cureus.23852)
Barnett, CF, Machado, RF. Sildenafil in the treatment of pulmonary hypertension. Vasc Health Risk Manag 2006;2:411–22. https://doi.org/10.2147/vhrm.2006.2.4.411 . (PMID: 10.2147/vhrm.2006.2.4.411)
McFadyen, C, Garfield, B, Mancio, J, Ridge, CA, Semple, T, Keeling, A, et al.. Use of sildenafil in patients with severe COVID-19 pneumonitis. Br J Anaesth 2022;129:e18–21. https://doi.org/10.1016/j.bja.2022.04.004 . (PMID: 10.1016/j.bja.2022.04.004)
McGonagle, D, O’Donnell, JS, Sharif, K, Emery, P, Bridgewood, C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol 2020;2:e437–45. https://doi.org/10.1016/s2665-9913(20)30121-1 . (PMID: 10.1016/s2665-9913(20)30121-1)
Ghofrani, HA, Osterloh, IH, Grimminger, F. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov 2006;5:689–702. https://doi.org/10.1038/nrd2030 . (PMID: 10.1038/nrd2030)
Sebkhi, A, Strange, JW, Phillips, SC, Wharton, J, Wilkins, MR. Phosphodiesterase type 5 as a target for the treatment of hypoxia-induced pulmonary hypertension. Circulation 2003;107:3230–5. https://doi.org/10.1161/01.cir.0000074226.20466.b1 . (PMID: 10.1161/01.cir.0000074226.20466.b1)
Kukreja, RC, Wang, R, Koka, S, Das, A, Samidurai, A, Xi, L. Treating diabetes with combination of phosphodiesterase 5 inhibitors and hydroxychloroquine—a possible prevention strategy for COVID-19? Mol Cell Biochem 2022;478:679–96.
Laxmi, V, Gupta, R, Bhattacharya, SK, Ray, A, Gulati, K. Inhibitory effects of sildenafil and tadalafil on inflammation, oxidative stress and nitrosative stress in animal model of bronchial asthma. Pharmacol Rep 2019;71:517–21. https://doi.org/10.1016/j.pharep.2019.02.008 . (PMID: 10.1016/j.pharep.2019.02.008)
Mokry, J, Urbanova, A, Medvedova, I, Kertys, M, Mikolka, P, Kosutova, P, et al.. Effects of tadalafil (PDE5 inhibitor) and roflumilast (PDE4 inhibitor) on airway reactivity and markers of inflammation in ovalbumin-induced airway hyperresponsiveness in Guinea pigs. J Physiol Pharmacol 2017;68:721–30.
Urbanova, A, Medvedova, I, Kertys, M, Mikolka, P, Kosutova, P, Mokra, D, et al.. Dose dependent effects of tadalafil and roflumilast on ovalbumin-induced airway hyperresponsiveness in Guinea pigs. Exp Lung Res 2017;43:407–16. https://doi.org/10.1080/01902148.2017.1386735 . (PMID: 10.1080/01902148.2017.1386735)
Blanch, L, Albaiceta, GM. Sildenafil for pulmonary hypertension in ARDS: a new pleasant effect? Intensive Care Med 2010;36:729–31. https://doi.org/10.1007/s00134-010-1771-2 . (PMID: 10.1007/s00134-010-1771-2)
Zhao, L, Mason, NA, Morrell, NW, Kojonazarov, B, Sadykov, A, Maripov, A, et al.. Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation 2001;104:424–8. https://doi.org/10.1161/hc2901.093117 . (PMID: 10.1161/hc2901.093117)
Kifle, ZD, Ayele, AG, Enyew, EF. Drug repurposing approach, potential drugs, and novel drug targets for COVID-19 treatment. J Environ Public Health 2021;2021:2021–11. https://doi.org/10.1155/2021/6631721 . (PMID: 10.1155/2021/6631721)
Ahmed, NS. Tadalafil: 15 years’ journey in male erectile dysfunction and beyond. Drug Dev Res 2019;80:683–701. https://doi.org/10.1002/ddr.21493 . (PMID: 10.1002/ddr.21493)
Mondaini, N. Phosphodiesterase type 5 inhibitors and COVID-19: are they useful in disease management? World J Mens Health 2020;38:254. https://doi.org/10.5534/wjmh.200089 . (PMID: 10.5534/wjmh.200089)
Kniotek, M, Boguska, A. Sildenafil can affect innate and adaptive immune system in both experimental animals and patients. J Immunol Res 2017;2017:1–8. https://doi.org/10.1155/2017/4541958 . (PMID: 10.1155/2017/4541958)
Vlachopoulos, C, Ioakeimidis, N, Rokkas, K, Angelis, A, Terentes-Printzios, D, Stefanadis, C, et al.. Acute effect of sildenafil on inflammatory markers/mediators in patients with vasculogenic erectile dysfunction. Int J Cardiol 2015;182:98–101. https://doi.org/10.1016/j.ijcard.2014.12.072 . (PMID: 10.1016/j.ijcard.2014.12.072)
Gong, W, Duan, Q, Cai, Z, Chen, C, Ni, L, Yan, M, et al.. Chronic inhibition of cGMP‐specific phosphodiesterase 5 suppresses endoplasmic reticulum stress in heart failure. Br J Pharmacol 2013;170:1396–409. https://doi.org/10.1111/bph.12346 . (PMID: 10.1111/bph.12346)
Gudmundsdóttir, IJ, McRobbie, SJ, Robinson, SD, Newby, DE, Megson, IL. Sildenafil potentiates nitric oxide mediated inhibition of human platelet aggregation. Biochem Biophys Res Commun 2005;337:382–5. https://doi.org/10.1016/j.bbrc.2005.09.060 . (PMID: 10.1016/j.bbrc.2005.09.060)
Taibi, G, Carruba, G, Miceli, V, Cocciadiferro, L, Cucchiara, A, Nicotra, CMA. Sildenafil protects epithelial cell through the inhibition of xanthine oxidase and the impairment of ROS production. Free Radic Res 2010;44:232–9. https://doi.org/10.3109/10715760903431426 . (PMID: 10.3109/10715760903431426)
Perk, H, Armagan, A, Nazıroğlu, M, Soyupek, S, Hoscan, MB, Sütcü, R, et al.. Sildenafil citrate as a phosphodiesterase inhibitor has an antioxidant effect in the blood of men. J Clin Pharm Therapeut 2008;33:635–40. https://doi.org/10.1111/j.1365-2710.2008.00962.x . (PMID: 10.1111/j.1365-2710.2008.00962.x)
Wolter, S, Dittmar, F, Seifert, R. cCMP and cUMP in apoptosis: concepts and methods. Non-canonical Cyclic Nucleotides 2017;238:25–47. https://doi.org/10.1007/164_2016_5007 . (PMID: 10.1007/164_2016_5007)
Puzzo, D, Loreto, C, Giunta, S, Musumeci, G, Frasca, G, Podda, MV, et al.. Effect of phosphodiesterase-5 inhibition on apoptosis and beta amyloid load in aged mice. Neurobiol Aging 2014;35:520–31. https://doi.org/10.1016/j.neurobiolaging.2013.09.002 . (PMID: 10.1016/j.neurobiolaging.2013.09.002)
Choi, DE, Jeong, JY, Lim, BJ, Chung, S, Chang, YK, Lee, SJ, et al.. Pretreatment of sildenafil attenuates ischemia-reperfusion renal injury in rats. Am J Physiol Ren Physiol 2009;297:F362–70. https://doi.org/10.1152/ajprenal.90609.2008 . (PMID: 10.1152/ajprenal.90609.2008)
Iordache, AM, Docea, AO, Buga, AM, Zlatian, O, Ciurea, ME, Rogoveanu, OC, et al.. Sildenafil and tadalafil reduce the risk of contrast-induced nephropathy by modulating the oxidant/antioxidant balance in a murine model. Food Chem Toxicol 2020;135:111038. https://doi.org/10.1016/j.fct.2019.111038 . (PMID: 10.1016/j.fct.2019.111038)
Rogosnitzky, M, Berkowitz, E, Jadad, AR. No time to waste: real-world repurposing of generic drugs as a multifaceted strategy against COVID-19. Jmirx Med 2020;1:e19583. https://doi.org/10.2196/19583 . (PMID: 10.2196/19583)
Sarkar, C, Mondal, M, Torequl Islam, M, Martorell, M, Docea, AO, Maroyi, A, et al.. Potential therapeutic options for COVID-19: current status, challenges, and future perspectives. Front Pharmacol 2020;11:1428. https://doi.org/10.3389/fphar.2020.572870 . (PMID: 10.3389/fphar.2020.572870)
Cadirci, E, Halici, Z, Odabasoglu, F, Albayrak, A, Karakus, E, Unal, D, et al.. Sildenafil treatment attenuates lung and kidney injury due to overproduction of oxidant activity in a rat model of sepsis: a biochemical and histopathological study. Clin Exp Immunol 2011;166:374–84. https://doi.org/10.1111/j.1365-2249.2011.04483.x . (PMID: 10.1111/j.1365-2249.2011.04483.x)
Deng, M, Loughran, PA, Zhang, L, Scott, MJ, Billiar, TR. Shedding of the tumor necrosis factor (TNF) receptor from the surface of hepatocytes during sepsis limits inflammation through cGMP signaling. Sci Signal 2015;8:ra11–1. https://doi.org/10.1126/scisignal.2005548 . (PMID: 10.1126/scisignal.2005548)
Kosutova, P, Mikolka, P, Balentova, S, Kolomaznik, M, Adamkov, M, Mokry, J, et al.. Effects of phosphodiesterase 5 inhibitor sildenafil on the respiratory parameters, inflammation and apoptosis in a saline lavage-induced model of acute lung injury. JPP 2018;5:15.
Shekerdemian, LS, Ravn, HB, Penny, DJ. Intravenous sildenafil lowers pulmonary vascular resistance in a model of neonatal pulmonary hypertension. Am J Respir Crit Care Med 2002;165:1098–102. https://doi.org/10.1164/ajrccm.165.8.2107097 . (PMID: 10.1164/ajrccm.165.8.2107097)
Gokakin, AK, Deveci, K, Kurt, A, Karakus, BC, Duger, C, Tuzcu, M, et al.. The protective effects of sildenafil in acute lung injury in a rat model of severe scald burn: a biochemical and histopathological study. Burns 2013;39:1193–9. https://doi.org/10.1016/j.burns.2012.12.017 . (PMID: 10.1016/j.burns.2012.12.017)
Rocco, PRM, Momesso, DP, Figueira, RC, Ferreira, HC, Cadete, RA, Légora-Machado, A, et al.. Therapeutic potential of a new phosphodiesterase inhibitor in acute lung injury. Eur Respir J 2003;22:20–7. https://doi.org/10.1183/09031936.03.00108603 . (PMID: 10.1183/09031936.03.00108603)
Sarangi, MK, Padhi, S, Dheeman, S, Karn, SK, Patel, LD, Yi, DK, et al.. Diagnosis, prevention, and treatment of coronavirus disease: a review. Expert Rev Anti Infect Ther 2022;20:243–66.
Barnes, H, Brown, Z, Burns, A, Williams, T. Phosphodiesterase 5 inhibitors for pulmonary hypertension. Cochrane Database Syst Rev 2019;1:CD012621. https://doi.org/10.1002/14651858.cd012621 . (PMID: 10.1002/14651858.cd012621)
Bourne, MH, Kottom, TJ, Hebrink, DM, Choudhury, M, Leof, EB, Limper, AH. Vardenafil activity in lung fibrosis and in vitro synergy with nintedanib. Cells 2021;10:3502. https://doi.org/10.3390/cells10123502 . (PMID: 10.3390/cells10123502)
Dal Moro, F, Livi, U. Any possible role of phosphodiesterase type 5 inhibitors in the treatment of severe COVID19 infections? A lesson from urology. Clin Immunol 2020;214:108414. https://doi.org/10.1016/j.clim.2020.108414 . (PMID: 10.1016/j.clim.2020.108414)
Santamarina, MG, Beddings, I, Lomakin, FM, Boisier Riscal, D, Gutiérrez Claveria, M, Vidal Marambio, J, et al.. Sildenafil for treating patients with COVID-19 and perfusion mismatch: a pilot randomized trial. Crit Care 2022;26:1–12. https://doi.org/10.1186/s13054-021-03885-y . (PMID: 10.1186/s13054-021-03885-y)
Mokra, D, Mokry, J. Phosphodiesterase inhibitors in acute lung injury: what are the perspectives? Int J Mol Sci 2021;22:1929. https://doi.org/10.3390/ijms22041929 . (PMID: 10.3390/ijms22041929)
Ntontsi, P, Detta, A, Bakakos, P, Loukides, S, Hillas, G. Experimental and investigational phosphodiesterase inhibitors in development for asthma. Expet Opin Invest Drugs 2019;28:261–6. https://doi.org/10.1080/13543784.2019.1571582 . (PMID: 10.1080/13543784.2019.1571582)
Toward, TJ, Smith, N, Broadley, KJ. Effect of phosphodiesterase-5 inhibitor, sildenafil (Viagra), in animal models of airways disease. Am J Respir Crit Care Med 2004;169:227–34. https://doi.org/10.1164/rccm.200211-1372oc . (PMID: 10.1164/rccm.200211-1372oc)
Tetsi, L, Charles, AL, Paradis, S, Lejay, A, Talha, S, Geny, B, et al.. Effects of cyclic nucleotide phosphodiesterases (PDEs) on mitochondrial skeletal muscle functions. Cell Mol Life Sci 2017;74:1883–93. https://doi.org/10.1007/s00018-016-2446-0 . (PMID: 10.1007/s00018-016-2446-0)
Cannegieter, SC, Klok, FA. COVID‐19 associated coagulopathy and thromboembolic disease: commentary on an interim expert guidance. Res Pract Thromb Haemost 2020;4:439–45. https://doi.org/10.1002/rth2.12350 . (PMID: 10.1002/rth2.12350)
Luo, W-R, Yu, H, Gou, J-Z, Li, X-X, Sun, Y, Li, J-X, et al.. Histopathologic findings in the explant lungs of a patient with COVID-19 treated with bilateral orthotopic lung transplant. Transplantation 2020;104:e329–31.
Horn, E, Chakinala, MM, Oudiz, R, Joseloff, E, Rosenzweig, EB. Author rebuttal to response regarding “Letter to the Editor regarding ‘Could pulmonary arterial hypertension patients be at lower risk from severe COVID-19?’” Pulm Circ 2020;10:2045894020936663. https://doi.org/10.1177/2045894020936663 . (PMID: 10.1177/2045894020936663)
Mergia, E, Stegbauer, J. Role of phosphodiesterase 5 and cyclic GMP in hypertension. Curr Hypertens Rep 2016;18:39. https://doi.org/10.1007/s11906-016-0646-5 . (PMID: 10.1007/s11906-016-0646-5)
Jankov, RP, Daniel, KL, Iny, S, Kantores, C, Ivanovska, J, Fadel, NB, et al.. Sodium nitrite augments lung S-nitrosylation and reverses chronic hypoxic pulmonary hypertension in juvenile rats. Am J Physiol Lung Cell Mol Physiol 2018;315:L742–51. https://doi.org/10.1152/ajplung.00184.2018 . (PMID: 10.1152/ajplung.00184.2018)
Al-Kuraishy, HM, Al-Gareeb, AI. From SARS-CoV to nCoV-2019: ruction and argument. Arch Clin Infect Dis 2020;15:2345–641. https://doi.org/10.5812/archcid.102624 . (PMID: 10.5812/archcid.102624)
Thieme, M, Sivritas, SH, Mergia, E, Potthoff, SA, Yang, G, Hering, L, et al.. Phosphodiesterase 5 inhibition ameliorates angiotensin II-dependent hypertension and renal vascular dysfunction. Am J Physiol Ren Physiol 2017;312:F474–81. https://doi.org/10.1152/ajprenal.00376.2016 . (PMID: 10.1152/ajprenal.00376.2016)
Karakhanova, S, Yang, Y, Link, J, Soltek, S, von Ahn, K, Umansky, V, et al.. Gender-specific immunological effects of the phosphodiesterase 5 inhibitor sildenafil in healthy mice. Mol Immunol 2013;56:649–59. https://doi.org/10.1016/j.molimm.2013.06.021 . (PMID: 10.1016/j.molimm.2013.06.021)
Pifarré, P, Gutierrez-Mecinas, M, Prado, J, Usero, L, Roura-Mir, C, Giralt, M, et al.. Phosphodiesterase 5 inhibition at disease onset prevents experimental autoimmune encephalomyelitis progression through immunoregulatory and neuroprotective actions. Exp Neurol 2014;251:58–71. https://doi.org/10.1016/j.expneurol.2013.10.021 . (PMID: 10.1016/j.expneurol.2013.10.021)
Meyer, C, Sevko, A, Ramacher, M, Bazhin, AV, Falk, CS, Osen, W, et al.. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci USA 2011;108:17111–6. https://doi.org/10.1073/pnas.1108121108 . (PMID: 10.1073/pnas.1108121108)
Serafini, P, Meckel, K, Kelso, M, Noonan, K, Califano, J, Koch, W, et al.. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 2006;203:2691–702. https://doi.org/10.1084/jem.20061104 . (PMID: 10.1084/jem.20061104)
Rawat, SG, Tiwari, RK, Jaiswara, PK, Gupta, VK, Sonker, P, Vishvakarma, NK, et al.. Phosphodiesterase 5 inhibitor sildenafil potentiates the antitumor activity of cisplatin by ROS-mediated apoptosis: a role of deregulated glucose metabolism. Apoptosis 2022;27:606–18. https://doi.org/10.1007/s10495-022-01741-0 . (PMID: 10.1007/s10495-022-01741-0)
Farrow, KN, Wedgwood, S, Lee, KJ, Czech, L, Gugino, SF, Lakshminrusimha, S, et al.. Mitochondrial oxidant stress increases PDE5 activity in persistent pulmonary hypertension of the newborn. Respir Physiol Neurobiol 2010;174:272–81. https://doi.org/10.1016/j.resp.2010.08.018 . (PMID: 10.1016/j.resp.2010.08.018)
Oswal, M, Varghese, R, Zagade, T, Dhatrak, C, Sharma, R, Kumar, D. Dietary supplements and medicinal plants in urolithiasis: diet, prevention, and cure. J Pharm Pharmacol 2023;75:719–45.
Varghese, R, Kumar, D, Sharma, R. Global threat from novel SARS-CoV-2 variants, BF.7, XBB.1.5, BQ.1, and BQ.1.1: variants of concern? Hum Cell 2023;36:1218–21. https://doi.org/10.1007/s13577-023-00903-9 . (PMID: 10.1007/s13577-023-00903-9)
Varghese, R, Pai, S, Kumar, D, Sharma, R. SARS-CoV-2 XBB.1.16 variant: India in focus? J Med Virol 2023;95:e28829. https://doi.org/10.1002/jmv.28829 . (PMID: 10.1002/jmv.28829)
Varghese, R, Karsiya, J, Deshpande, P. Hookah smoking and COVID-19 in India: fan the flames. MGM J Med Sci 2021;8:459. https://doi.org/10.4103/mgmj.mgmj_63_21 . (PMID: 10.4103/mgmj.mgmj_63_21)
Varghese, R, Kumar, D, Sharma, R. Tomato Flu in India: a confluence of resurgence and mutation? Int J Surg 2022;108:106991. https://doi.org/10.1016/j.ijsu.2022.106991 . (PMID: 10.1016/j.ijsu.2022.106991)
Varghese, R, Patel, P, Kumar, D, Sharma, R. Monkeypox and drug repurposing: seven potential antivirals to combat the viral disease. Rev Environ Health 2023. https://doi.org/10.1515/reveh-2023-0001 . (PMID: 10.1515/reveh-2023-0001)
Varghese, R, Patel, P, Kumar, D, Sharma, R. Climate change and glacier melting: risks for unusual outbreaks? J Trav Med 2023;30:taad015. https://doi.org/10.1093/jtm/taad015 . (PMID: 10.1093/jtm/taad015)
Varghese, R, Salvi, S, Sood, P, Kulkarni, B, Kumar, D. Cubosomes in cancer drug delivery: a review. Colloids Interface Sci Commun 2022;46:100561. https://doi.org/10.1016/j.colcom.2021.100561 . (PMID: 10.1016/j.colcom.2021.100561)
Varghese, R, Deshpande, A, Digholkar, G, Kumar, D. Deciphering the role of artificial intelligence in health care, learning and development. In: The adoption and effect of artificial intelligence on human resources management, part B . UK: Emerald Publishing House; 2023.
Namdeo, AG, Varghese, R, Kapase, Y, Kumbhar, P. Integrative medicine in the treatment of COVID-19: an Indian perspective. Curr Tradit Med 2022;9:44–83. https://doi.org/10.2174/2215083808666220518095441 . (PMID: 10.2174/2215083808666220518095441)
فهرسة مساهمة: Keywords: COVID-19; SARS-CoV-2; delta; omicron; phosphodiesterase 5 inhibitors; sildenafil; tadalafil
المشرفين على المادة: 0 (Phosphodiesterase 5 Inhibitors)
BW9B0ZE037 (Sildenafil Citrate)
742SXX0ICT (Tadalafil)
5O8R96XMH7 (Vardenafil Dihydrochloride)
EC 3.1.4.35 (Cyclic Nucleotide Phosphodiesterases, Type 5)
0 (Piperazines)
0 (Imidazoles)
0 (Carbolines)
0 (Purines)
تواريخ الأحداث: Date Created: 20240103 Date Completed: 20240105 Latest Revision: 20240105
رمز التحديث: 20240105
DOI: 10.1515/dmpt-2023-0011
PMID: 38167268
قاعدة البيانات: MEDLINE
الوصف
تدمد:2363-8915
DOI:10.1515/dmpt-2023-0011