دورية أكاديمية

The genetic framework of primary ciliary dyskinesia assessed by soft computing analysis.

التفاصيل البيبلوغرافية
العنوان: The genetic framework of primary ciliary dyskinesia assessed by soft computing analysis.
المؤلفون: Pifferi M; Department of Pediatrics, University Hospital of Pisa, Pisa, Italy., Boner AL; Pediatric Unit, Department of Surgical Science, Dentistry, Gynecology and Pediatrics, Verona University Medical School, Verona, Italy., Cangiotti A; Electron Microscopy Unit, Department of Experimental and Clinical Medicine, University Hospital of Ancona, Ancona, Italy., Cudazzo A; Department of Computer Science, University of Pisa, Pisa, Italy., Maj D; Department of Pediatrics, University Hospital of Pisa, Pisa, Italy., Gracci S; Department of Pediatrics, University Hospital of Pisa, Pisa, Italy., Michelucci A; Unit of Molecular Genetics, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy., Bertini V; Section of Cytogenetics, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy., Piazza M; Pediatric Unit, Department of Surgical Science, Dentistry, Gynecology and Pediatrics, Verona University Medical School, Verona, Italy., Valetto A; Section of Cytogenetics, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy., Caligo MA; Unit of Molecular Genetics, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy., Peroni D; Department of Pediatrics, University Hospital of Pisa, Pisa, Italy., Bush A; Department of Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK.
المصدر: Pediatric pulmonology [Pediatr Pulmonol] 2024 Apr; Vol. 59 (4), pp. 891-898. Date of Electronic Publication: 2024 Jan 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8510590 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-0496 (Electronic) Linking ISSN: 10990496 NLM ISO Abbreviation: Pediatr Pulmonol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005-> : Hoboken, NJ : Wiley-Liss
Original Publication: [Philadelphia, PA] : W.B. Saunders, [c1985-
مواضيع طبية MeSH: Kartagener Syndrome*/diagnosis , Kartagener Syndrome*/genetics , Ciliary Motility Disorders*/diagnosis , Ciliary Motility Disorders*/genetics, Humans ; Soft Computing ; Cilia/genetics ; Cilia/ultrastructure ; Microscopy, Video ; Microscopy, Electron, Transmission
مستخلص: Background: International guidelines disagree on how best to diagnose primary ciliary dyskinesia (PCD), not least because many tests rely on pattern recognition. We hypothesized that quantitative distribution of ciliary ultrastructural and motion abnormalities would detect most frequent PCD-causing groups of genes by soft computing analysis.
Methods: Archived data on transmission electron microscopy and high-speed video analysis from 212 PCD patients were re-examined to quantitate distribution of ultrastructural (10 parameters) and functional ciliary features (4 beat pattern and 2 frequency parameters). The correlation between ultrastructural and motion features was evaluated by blinded clustering analysis of the first two principal components, obtained from ultrastructural variables for each patient. Soft computing was applied to ultrastructure to predict ciliary beat frequency (CBF) and motion patterns by a regression model. Another model classified the patients into the five most frequent PCD-causing gene groups, from their ultrastructure, CBF and beat patterns.
Results: The patients were subdivided into six clusters with similar values to homologous ultrastructural phenotype, motion patterns, and CBF, except for clusters 1 and 4, attributable to normal ultrastructure. The regression model confirmed the ability to predict functional ciliary features from ultrastructural parameters. The genetic classification model identified most of the different groups of genes, starting from all quantitative parameters.
Conclusions: Applying soft computing methodologies to PCD diagnostic tests optimizes their value by moving from pattern recognition to quantification. The approach may also be useful to evaluate atypical PCD, and novel genetic abnormalities of unclear disease-producing potential in the future.
(© 2024 Wiley Periodicals LLC.)
References: Bush A, Hogg C. Primary ciliary dyskinesia: recent advances in epidemiology, diagnosis, management and relationship with the expanding spectrum of ciliopathy. Expert Rev Respir Med. 2012;6:663‐682.
Davis SD, Ferkol TW, Rosenfeld M, et al. Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am J Respir Crit Care Med. 2015;191:316‐324.
Davis SD, Rosenfeld M, Lee HS, et al. Primary ciliary dyskinesia: longitudinal study of lung disease by ultrastructure defect and genotype. Am J Respir Crit Care Med. 2019;199:190‐198.
Pifferi M, Bush A, Mariani F, et al. Lung function longitudinal study by phenotype and genotype in primary ciliary dyskinesia. Chest. 2020;158:117‐120.
Pifferi M, Bush A, Mulé G, et al. Longitudinal lung volume changes by ultrastructure and genotype in primary ciliary dyskinesia. Ann Am Thorac Soc. 2021;18:963‐970.
Lucas JS, Barbato A, Collins SA, et al. European respiratory society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J. 2017;49:1601090. doi:10.1183/13993003.01090-2016.
Shapiro AJ, Davis SD, Polineni D, et al. Diagnosis of primary ciliary dyskinesia. An official American Thoracic Society clinical practice guideline. Am J Respir Crit Care Med. 2018;197:e24‐e39.
Shoemark A, Dell S, Shapiro A, Lucas JS. ERS and ATS diagnostic guidelines for primary ciliary dyskinesia: similarities and differences in approach to diagnosis. Eur Respir J. 2019;54:1901066. doi:10.1183/13993003.01066-2019.
Werner C, Onnebrink JG, Omran H. Diagnosis and management of primary ciliary dyskinesia. Cilia. 2015;4:2. doi:10.1186/s13630-014-0011-8.
Chilvers MA, Rutman A, O'Callaghan C. Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J Allergy Clin Immunol. 2003;112:518‐524.
Blanchon S, Legendre M, Bottier M, et al. Deep phenotyping, including quantitative ciliary beating parameters, and extensive genotyping in primary ciliary dyskinesia. J Med Genet. 2020;57:237‐244.
Hogg C, Bush A. CON: primary ciliary dyskinesia diagnosis: genes are all you need! Paediatr Respir Rev. 2021;37:34‐36.
Legendre M, Zaragosi LE, Mitchison HM. Motile cilia and airway disease. Semin Cell Dev Biol. 2021;110:19‐33.
Shoemark A, Rubbo B, Legendre M, et al. Topological data analysis reveals genotype‐phenotype relationships in primary ciliary dyskinesia. Eur Respir J. 2021;58:2002359. doi:10.1183/13993003.02359-2020.
Wallmeier J, Nielsen KG, Kuehni CE, et al. Motile ciliopathies. Nat Rev Dis Primers. 2020;6:77. doi:10.1038/s41572-020-0209-6.
Rocca MS, Piatti G, Michelucci A, et al. A novel genetic variant in DNAI2 detected by custom gene panel in a newborn with primary ciliary dyskinesia: case report. BMC Med Genet. 2020;21:220. doi:10.1186/s12881-020-01160-5.
Shoemark A, Boon M, Brochhausen C, et al. International consensus guideline for reporting transmission electron microscopy results in the diagnosis of primary ciliary dyskinesia (BEAT PCD TEM Criteria). Eur Respir J. 2020;55:1900725. doi:10.1183/13993003.00725-2019.
Shaw PJ. Multivariate Statistics for the Environmental Sciences. Hodder Arnold; 2003.
Xu R, Wunsch II D. Survey of clustering algorithms. IEEE Trans Neural Netw. 2005;16:645‐678.
Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit‐learn: machine learning in Python. JLMR. 2011;12:2825‐2830.
Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016.
Bhatt R, Hogg C. Primary ciliary dyskinesia: a major player in a bigger game. Breathe. 2020;16:200047. doi:10.1183/20734735.0047-2020.
Leigh MW, Horani A, Kinghorn B, O'Connor MG, Zariwala MA, Knowles MR. Primary ciliary dyskinesia (PCD): a genetic disorder of motile cilia. Transl Sci Rare Dis. 2019;4:51‐75.
James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning With Applications in R. Springer; 2013.
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over‐sampling technique. J Artif Intell Res. 2002;16:321‐357. doi:10.1613/jair.953.
Branco P, Torgo L, Ribeiro RP. A survey of predictive modeling on imbalanced domains. ACM Comput Surv. 2016;49:1‐50. doi:10.1145/2907070.
Haibo HE, Yunqian MA. Imbalanced Learning: Foundations, Algorithms, and Applications. 1st ed. Wiley‐IEEE Press; 2013.
Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006;27:861‐874. doi:10.1016/j.patrec.2005.10.010.
ShuKla N. Machine learning with TensorFlow. Manning Publications; 2018.
Wallmeier J, Frank D, Shoemark A, et al. De novo mutations in FOXJ1 result in a motile ciliopathy with hydrocephalus and randomization of left/right body asymmetry. Am J Hum Genet. 2019;105:1030‐1039.
Lucas JS, Davis SD, Omran H, Shoemark A. Primary ciliary dyskinesia in the genomics age. Lancet Respir Med. 2020;8:202‐216.
Liu Z, Nguyen QPH, Guan Q, et al. A quantitative super‐resolution imaging toolbox for diagnosis of motile ciliopathies. Sci Transl Med. 2020;12:eaay0071. doi:10.1126/scitranslmed.aay0071.
Knowles MR, Ostrowski LE, Leigh MW, et al. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am J Respir Crit Care Med. 2014;189:707‐717.
معلومات مُعتمدة: None
فهرسة مساهمة: Keywords: artificial intelligence; ciliary motion analysis; ciliary ultrastructure; genetic abnormalities; primary ciliary dyskinesia
تواريخ الأحداث: Date Created: 20240103 Date Completed: 20240329 Latest Revision: 20240329
رمز التحديث: 20240329
DOI: 10.1002/ppul.26842
PMID: 38169302
قاعدة البيانات: MEDLINE
الوصف
تدمد:1099-0496
DOI:10.1002/ppul.26842