دورية أكاديمية

Mice with an autism-associated R451C mutation in neuroligin-3 show intact attention orienting but atypical responses to methylphenidate and atomoxetine in the mouse-Posner task.

التفاصيل البيبلوغرافية
العنوان: Mice with an autism-associated R451C mutation in neuroligin-3 show intact attention orienting but atypical responses to methylphenidate and atomoxetine in the mouse-Posner task.
المؤلفون: Li S; Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia. shutingli36@gmail.com.; Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia. shutingli36@gmail.com., May C; Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia., Pang TY; Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia., Churilov L; Melbourne Medical School, The University of Melbourne, Parkville, VIC, 3010, Australia., Hannan AJ; Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia., Johnson KA; Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia., Burrows EL; Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia. emma.burrows@florey.edu.au.
المصدر: Psychopharmacology [Psychopharmacology (Berl)] 2024 Mar; Vol. 241 (3), pp. 555-567. Date of Electronic Publication: 2024 Jan 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 7608025 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-2072 (Electronic) Linking ISSN: 00333158 NLM ISO Abbreviation: Psychopharmacology (Berl) Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag.
مواضيع طبية MeSH: Autistic Disorder*, Mice ; Humans ; Animals ; Atomoxetine Hydrochloride/pharmacology ; Neuroligins ; Mutation/genetics ; Attention
مستخلص: Rationale: Atypical attention orienting has been associated with some autistic symptoms, but the neural mechanisms remain unclear. The human Posner task, a classic attention orienting paradigm, was recently adapted for use with mice, supporting the investigation of the neurobiological underpinnings of atypical attention orienting in preclinical mouse models.
Objective: The current study tested mice expressing the autism-associated R451C gene mutation in neuroligin-3 (NL3) on the mouse-Posner (mPosner) task.
Methods: NL3 R451C and wild-type (WT) mice were trained to respond to a validly or invalidly cued target on a touchscreen. The cue was a peripheral non-predictive flash in the exogenous task and a central spatially predictive image in the endogenous task. The effects of dopaminergic- and noradrenergic-modulating drugs, methylphenidate and atomoxetine, on task performance were assessed.
Results: In both tasks, mice were quicker and more accurate in the validly versus invalidly cued trials, consistent with results in the human Posner task. NL3 R451C and WT mice showed similar response times and accuracy but responded differently when treated with methylphenidate and atomoxetine. Methylphenidate impaired exogenous attention disengagement in NL3 R451C mice but did not significantly affect WT mice. Atomoxetine impaired endogenous orienting in WT mice but did not significantly affect NL3 R451C mice.
Conclusions: NL3 R451C mice demonstrated intact attention orienting but altered responses to the pharmacological manipulation of the dopaminergic and noradrenergic networks. These findings expand our understanding of the NL3 R451C mutation by suggesting that this mutation may lead to selective alterations in attentional processes.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Baker EK, Richdale AL, Hazi A, Prendergast LA (2019) Assessing a hyperarousal hypothesis of insomnia in adults with autism spectrum disorder. Autism Res 12:897–910. https://doi.org/10.1002/aur.2094. (PMID: 10.1002/aur.209430896090)
Baranek GT, Woynaroski TG, Nowell S, Turner-Brown L, DuBay M, Crais ER, Watson LR (2018) Cascading effects of attention disengagement and sensory seeking on social symptoms in a community sample of infants at-risk for a future diagnosis of autism spectrum disorder. Dev Cogn Neurosci 29:30–40. https://doi.org/10.1016/j.dcn.2017.08.006. (PMID: 10.1016/j.dcn.2017.08.00628869201)
Bariselli S, Hörnberg H, Prévost-Solié C, Musardo S, Hatstatt-Burklé L, Scheiffele P, Bellone C (2018) Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction. Nat Commun 9:3173. https://doi.org/10.1038/s41467-018-05382-3. (PMID: 10.1038/s41467-018-05382-3300936656085391)
Bast N, Boxhoorn S, Supér H, Helfer B, Polzer L, Klein C, Cholemkery H, Freitag CM (2023) Atypical Arousal Regulation in Children With Autism but Not With Attention-Deficit/Hyperactivity Disorder as Indicated by Pupillometric Measures of Locus Coeruleus Activity. Biol Psychiatry Cogn Neurosci Neuroimaging 8:11–20. https://doi.org/10.1016/j.bpsc.2021.04.010. (PMID: 10.1016/j.bpsc.2021.04.01033930603)
Bellgrove MA, Barry E, Johnson KA, Cox M, Dáibhis A, Daly M, Hawi Z, Lambert D, Fitzgerald M, McNicholas F, Robertson IH, Gill M, Kirley A (2008) Spatial attentional bias as a marker of genetic risk, symptom severity, and stimulant response in ADHD. Neuropsychopharmacology 33:2536–2545. https://doi.org/10.1038/sj.npp.1301637. (PMID: 10.1038/sj.npp.130163718046306)
Berridge CW, Devilbiss DM, Andrzejewski ME, Arnsten AFT, Kelley AE, Schmeichel B, Hamilton C, Spencer RC (2006) Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 60:1111–1120. https://doi.org/10.1016/j.biopsych.2006.04.022. (PMID: 10.1016/j.biopsych.2006.04.02216806100)
Braet W, Johnson KA, Tobin CT, Acheson R, McDonnell C, Hawi Z, Barry E, Mulligan A, Gill M, Bellgrove MA, Robertson IH, Garavan H (2011) FMRI activation during response inhibition and error processing: The role of the DAT1 gene in typically developing adolescents and those diagnosed with ADHD. Neuropsychologia 49:1641–1650. https://doi.org/10.1016/j.neuropsychologia.2011.01.001. (PMID: 10.1016/j.neuropsychologia.2011.01.00121232548)
Burrows EL, Laskaris L, Koyama L, Churilov L, Bornstein JC, Hill-Yardin EL, Hannan AJ (2015) A neuroligin-3 mutation implicated in autism causes abnormal aggression and increases repetitive behavior in mice. Mol Autism 6:1–11. https://doi.org/10.1186/s13229-015-0055-7. (PMID: 10.1186/s13229-015-0055-7)
Burrows EL, Eastwood AF, May C, Kolbe SC, Hill T, McLachlan NM, Churilov L, Hannan AJ (2017) Social Isolation alters social and mating behavior in the R451C neuroligin mouse model of autism. Neural Plast 2017:1–9. https://doi.org/10.1155/2017/8361290. (PMID: 10.1155/2017/8361290)
Burrows EL, May C, Hill T, Churliov L, Johnson KA, Hannan AJ (2022) Mice with an autism-associated R451C mutation in neuroligin-3 show a cautious but accurate response style in touchscreen attention tasks. Genes, Brain Behav 21:1–14. https://doi.org/10.1111/gbb.12757. (PMID: 10.1111/gbb.12757)
Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27:699–711. https://doi.org/10.1016/S0893-133X(02)00346-9. (PMID: 10.1016/S0893-133X(02)00346-912431845)
Caballero-Puntiverio M, Fitzpatrick CM, Woldbye DPD, Andreasen JT (2017) Effects of amphetamine and methylphenidate on attentional performance and impulsivity in the mouse 5-choice serial reaction time task. J Psychopharmacol 31:272–283. https://doi.org/10.1177/0269881116684339. (PMID: 10.1177/026988111668433928093027)
Caballero-Puntiverio M, Lerdrup LS, Grupe M, Larsen CW, Dietz AG, Andreasen JT (2019) Effect of ADHD medication in male C57BL/6J mice performing the rodent Continuous Performance Test. Psychopharmacology 236:1839–1851. https://doi.org/10.1007/s00213-019-5167-x. (PMID: 10.1007/s00213-019-5167-x30656365)
Caballero-Puntiverio M, Lerdrup LS, Arvastson L, Aznar S, Andreasen JT (2020) ADHD medication and the inverted U-shaped curve: a pharmacological study in female mice performing the rodent Continuous Performance Test (rCPT). Prog Neuro-Psychopharmacology Biol Psychiatry 99:109823. https://doi.org/10.1016/j.pnpbp.2019.109823. (PMID: 10.1016/j.pnpbp.2019.109823)
Canu D, Van der Paelt S, Canal-Bedia R, Posada M, Vanvuchelen M, Roeyers H (2021) Early non-social behavioural indicators of autism spectrum disorder (ASD) in siblings at elevated likelihood for ASD: a systematic review. Eur Child Adolesc Psychiatry 30:497–538. https://doi.org/10.1007/s00787-020-01487-7. (PMID: 10.1007/s00787-020-01487-732088859)
Cao W, Lin S, Xia Q qiang, Du Y lan, Yang Q, Zhang M ying, Lu Y qing, Xu J, Duan S min, Xia J, Feng G, Xu J, Luo JH (2018) Gamma oscillation dysfunction in mPFC leads to social deficits in neuroligin 3 R451C knockin mice. Neuron 97:1253-1260.e7. https://doi.org/10.1016/j.neuron.2018.02.001.
Casteau S, Smith DT (2020) Covert attention beyond the range of eye-movements: evidence for a dissociation between exogenous and endogenous orienting. Cortex 122:170–186. https://doi.org/10.1016/j.cortex.2018.11.007. (PMID: 10.1016/j.cortex.2018.11.00730528427)
Clinton SM, Unroe KA, Shupe EA, McCoy CR, Glover ME (2022) Resilience to stress: lessons from rodents about nature versus nurture. Neuroscientist 28:283–298. https://doi.org/10.1177/1073858421989357. (PMID: 10.1177/107385842198935733567987)
Comoletti D (2004) The Arg451Cys-Neuroligin-3 mutation associated with autism reveals a defect in protein processing. J Neurosci 24:4889–4893. https://doi.org/10.1523/JNEUROSCI.0468-04.2004. (PMID: 10.1523/JNEUROSCI.0468-04.2004151520506729460)
Ellegood J, Lerch JP, Henkelman RM (2011) Brain abnormalities in a Neuroligin3 R451C knockin mouse model associated with autism. Autism Res 4:368–376. https://doi.org/10.1002/aur.215. (PMID: 10.1002/aur.21521882360)
Ellegood J, Anagnostou E, Babineau BA, Crawley JN, Lin L, Genestine M, DiCicco-Bloom E, Lai JKY, Foster JA, Peñagarikano O, Geschwind DH, Pacey LK, Hampson DR, Laliberté CL, Mills AA, Tam E, Osborne LR, Kouser M, Espinosa-Becerra F et al (2015) Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Mol Psychiatry 20:118–125. https://doi.org/10.1038/mp.2014.98. (PMID: 10.1038/mp.2014.9825199916)
Elsabbagh M, Fernandes J, Jane Webb S, Dawson G, Charman T, Johnson MH (2013) Disengagement of visual attention in infancy is associated with emerging autism in toddlerhood. Biol Psychiatry 74:189–194. https://doi.org/10.1016/j.biopsych.2012.11.030. (PMID: 10.1016/j.biopsych.2012.11.030233746403715700)
Etherton M, Foldy C, Sharma M, Tabuchi K, Liu X, Shamloo M, Malenka RC, Sudhof TC (2011) Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc Natl Acad Sci 108:13764–13769. https://doi.org/10.1073/pnas.1111093108. (PMID: 10.1073/pnas.1111093108218080203158170)
Fitzpatrick CM, Caballero-Puntiverio M, Gether U, Habekost T, Bundesen C, Vangkilde S, Woldbye DPD, Andreasen JT, Petersen A (2017) Theory of Visual Attention (TVA) applied to mice in the 5-choice serial reaction time task. Psychopharmacology 234:845–855. https://doi.org/10.1007/s00213-016-4520-6. (PMID: 10.1007/s00213-016-4520-628070619)
Fossella J, Sommer T, Fan J, Wu Y, Swanson JM, Pfaff DW, Posner MI (2002) Assessing the molecular genetics of attention networks. BMC Neurosci 3:1–11. https://doi.org/10.1186/1471-2202-3-14. (PMID: 10.1186/1471-2202-3-14)
Graf H, Abler B, Freudenmann R, Beschoner P, Schaeffeler E, Spitzer M, Schwab M, Grön G (2011) Neural correlates of error monitoring modulated by atomoxetine in healthy volunteers. Biol Psychiatry 69:890–897. https://doi.org/10.1016/j.biopsych.2010.10.018. (PMID: 10.1016/j.biopsych.2010.10.01821168122)
Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, Pallesen J, Agerbo E, Andreassen OA, Anney R, Awashti S, Belliveau R, Bettella F, Buxbaum JD, Bybjerg-Grauholm J, Bækvad-Hansen M, Cerrato F, Chambert K, Christensen JH et al (2019) Identification of common genetic risk variants for autism spectrum disorder. Nat Genet 51:431–444. https://doi.org/10.1038/s41588-019-0344-8. (PMID: 10.1038/s41588-019-0344-8308045586454898)
Hosie S, Malone DT, Liu S, Glass M, Adlard PA, Hannan AJ, Hill-Yardin EL (2018) Altered amygdala excitation and CB1 receptor modulation of aggressive behavior in the neuroligin-3R451C mouse model of autism. Front Cell Neurosci 12:1–10. https://doi.org/10.3389/fncel.2018.00234. (PMID: 10.3389/fncel.2018.00234)
Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, Bourgeron T (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34:27–29. https://doi.org/10.1038/ng1136. (PMID: 10.1038/ng1136126690651925054)
Jaramillo TC, Liu S, Pettersen A, Birnbaum SG, Powell CM (2014) Autism-related neuroligin-3 mutation alters social behavior and spatial learning. Autism Res 7:264–272. https://doi.org/10.1002/aur.1362. (PMID: 10.1002/aur.1362246199773989414)
Jentsch JD, Aarde SM, Seu E (2009) Effects of atomoxetine and methylphenidate on performance of a lateralized reaction time task in rats. Psychopharmacology 202:497–504. https://doi.org/10.1007/s00213-008-1181-0. (PMID: 10.1007/s00213-008-1181-018535818)
Jobski K, Höfer J, Hoffmann F, Bachmann C (2017) Use of psychotropic drugs in patients with autism spectrum disorders: a systematic review. Acta Psychiatr Scand 135:8–28. https://doi.org/10.1111/acps.12644. (PMID: 10.1111/acps.1264427624381)
Johnson KA, Barry E, Bellgrove MA, Cox M, Kelly SP, Dáibhis A, Daly M, Keavey M, Watchorn A, Fitzgerald M, McNicholas F, Kirley A, Robertson IH, Gill M (2008) Dissociation in response to methylphenidate on response variability in a group of medication naïve children with ADHD. Neuropsychologia 46:1532–1541. https://doi.org/10.1016/j.neuropsychologia.2008.01.002. (PMID: 10.1016/j.neuropsychologia.2008.01.00218289615)
Johnson KA, Barry E, Lambert D, Fitzgerald M, McNicholas F, Kirley A, Gill M, Bellgrove MA, Hawi Z (2013) Methylphenidate side effect profile is influenced by genetic variation in the attention-deficit/hyperactivity disorder-associated CES1 gene. J Child Adolesc Psychopharmacol 23:655–664. https://doi.org/10.1089/cap.2013.0032. (PMID: 10.1089/cap.2013.003224350812)
Koda K, Ago Y, Cong Y, Kita Y, Takuma K, Matsuda T (2010) Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J Neurochem 114:259–270. https://doi.org/10.1111/j.1471-4159.2010.06750.x. (PMID: 10.1111/j.1471-4159.2010.06750.x20403082)
Kodama T, Kojima T, Honda Y, Hosokawa T, Tsutsui KI, Watanabe M (2017) Oral administration of methylphenidate (Ritalin) affects dopamine release differentially between the prefrontal cortex and striatum: a microdialysis study in the monkey. J Neurosci 37:2387–2394. https://doi.org/10.1523/JNEUROSCI.2155-16.2017. (PMID: 10.1523/JNEUROSCI.2155-16.2017281541526596846)
Kowalczyk OS, Cubillo AI, Smith A, Barrett N, Giampietro V, Brammer M, Simmons A, Rubia K (2019) Methylphenidate and atomoxetine normalise fronto-parietal underactivation during sustained attention in ADHD adolescents. Eur Neuropsychopharmacol 29:1102–1116. https://doi.org/10.1016/j.euroneuro.2019.07.139. (PMID: 10.1016/j.euroneuro.2019.07.13931358436)
Kratz O, Studer P, Baack J, Malcherek S, Erbe K, Moll GH, Heinrich H (2012) Differential effects of methylphenidate and atomoxetine on attentional processes in children with ADHD: an event-related potential study using the Attention Network Test. Prog Neuro-Psychopharmacology Biol Psychiatry 37:81–89. https://doi.org/10.1016/j.pnpbp.2011.12.008. (PMID: 10.1016/j.pnpbp.2011.12.008)
Kumar M, Duda JT, Hwang WT, Kenworthy C, Ittyerah R, Pickup S, Brodkin ES, Gee JC, Abel T, Poptani H (2014) High resolution magnetic resonance imaging for characterization of the Neuroligin-3 knock-in mouse model associated with autism spectrum disorder. PLoS One 9. https://doi.org/10.1371/journal.pone.0109872.
Kylliäinen A, Wallace S, Coutanche MN, Leppänen JM, Cusack J, Bailey AJ, Hietanen JK (2012) Affective-motivational brain responses to direct gaze in children with autism spectrum disorder. J Child Psychol Psychiatry Allied Discip 53:790–797. https://doi.org/10.1111/j.1469-7610.2011.02522.x. (PMID: 10.1111/j.1469-7610.2011.02522.x)
Landry O, Parker A (2013) A meta-analysis of visual orienting in autism. Front Hum Neurosci 7:833. https://doi.org/10.3389/fnhum.2013.00833. (PMID: 10.3389/fnhum.2013.00833243673143856368)
Li S, May C, Hannan AJ, Johnson KA, Burrows EL (2021) Assessing attention orienting in mice: a novel touchscreen adaptation of the Posner-style cueing task. Neuropsychopharmacology 46:432–441. https://doi.org/10.1038/s41386-020-00873-8. (PMID: 10.1038/s41386-020-00873-833007776)
Mar AC, Horner AE, Nilsson SRO, Alsiö J, Kent BA, Kim CH, Holmes A, Saksida LM, Bussey TJ (2013) The touchscreen operant platform for assessing executive function in rats and mice. Nat Protoc 8:1985–2005. https://doi.org/10.1038/nprot.2013.123. (PMID: 10.1038/nprot.2013.123240519604131754)
Martella G, Meringolo M, Trobiani L, De Jaco A, Pisani A, Bonsi P, De JA, Pisani A, Bonsi P (2018) The neurobiological bases of autism spectrum disorders: the R451C-neuroligin 3 mutation hampers the expression of long-term synaptic depression in the dorsal striatum. Eur J Neurosci 47:701–708. https://doi.org/10.1111/ejn.13705. (PMID: 10.1111/ejn.1370528921757)
Matoba N, Liang D, Sun H, Aygün N, McAfee JC, Davis JE, Raffield LM, Qian H, Piven J, Li Y, Kosuri S, Won H, Stein JL (2020) Common genetic risk variants identified in the SPARK cohort support DDHD2 as a candidate risk gene for autism. Transl Psychiatry 10. https://doi.org/10.1038/s41398-020-00953-9.
Matta SM, Moore Z, Walker FR, Hill-Yardin EL, Crack PJ (2020) An altered glial phenotype in the NL3R451C mouse model of autism. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-71171-y. (PMID: 10.1038/s41598-020-71171-y)
Meyer AF, O’Keefe J, Poort J (2020) Two Distinct Types of Eye-Head Coupling in Freely Moving Mice. Curr Biol 30:2116–2130. https://doi.org/10.1016/j.cub.2020.04.042. (PMID: 10.1016/j.cub.2020.04.042324133097284311)
Mizuno Y, Cai W, Supekar K, Makita K, Takiguchi S, Tomoda A, Menon V (2022) Methylphenidate remediates aberrant brain network dynamics in children with attention-deficit/hyperactivity disorder: a randomized controlled trial. Neuroimage 257:119332. https://doi.org/10.1016/j.neuroimage.2022.119332. (PMID: 10.1016/j.neuroimage.2022.11933235640787)
Norris RHCC, Churilov L, Hannan AJ, Nithianantharajah J (2019) Mutations in neuroligin-3 in male mice impact behavioral flexibility but not relational memory in a touchscreen test of visual transitive inference. Mol Autism 10:1–21. https://doi.org/10.1186/s13229-019-0292-2. (PMID: 10.1186/s13229-019-0292-2)
Paton K, Hammond P, Barry E, Fitzgerald M, McNicholas F, Kirley A, Robertson IH, Bellgrove MA, Gill M, Johnson KA (2014) Methylphenidate improves some but not all measures of ATTENTION, as measured by the TEA-Ch in medication-naïve children with ADHD. Child Neuropsychol 20:303–318. https://doi.org/10.1080/09297049.2013.790358. (PMID: 10.1080/09297049.2013.79035823639119)
Pearson DA, Santos CW, Aman MG, Arnold LE, Lane DM, Loveland KA, Mansour R, Ward AR, Casat CD, Jerger S, Schachar RJ, Bukstein OG, Cleveland LA (2020) Effects of extended-release methylphenidate treatment on cognitive task performance in children with autism spectrum disorder and attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 30:414–426. https://doi.org/10.1089/cap.2020.0004. (PMID: 10.1089/cap.2020.0004326448337475091)
Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3–25. https://doi.org/10.1080/00335558008248231. (PMID: 10.1080/003355580082482317367577)
Rasmussen L, Pratt N, Roughead E, Moffat A (2019) Prevalence of psychotropic medicine use in Australian children with autism spectrum disorder: a drug utilization study based on children enrolled in the longitudinal study of Australian children. J Autism Dev Disord 49:227–235. https://doi.org/10.1007/s10803-018-3718-3. (PMID: 10.1007/s10803-018-3718-330136113)
Rothwell PE, Fuccillo MV, Maxeiner S, Hayton SJ, Gokce O, Lim BK, Fowler SC, Malenka RC, Südhof TC (2014) Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell 158:198–212. https://doi.org/10.1016/j.cell.2014.04.045. (PMID: 10.1016/j.cell.2014.04.045249959864120877)
Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, Peng M, Collins R, Grove J, Klei L, Stevens C, Reichert J, Mulhern MS, Artomov M, Gerges S, Sheppard B, Xu X, Bhaduri A, Norman U et al (2020) Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180:568-584.e23. https://doi.org/10.1016/j.cell.2019.12.036. (PMID: 10.1016/j.cell.2019.12.036319814917250485)
Südhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455:903–911. https://doi.org/10.1038/nature07456. (PMID: 10.1038/nature07456189235122673233)
Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM, Südhof TC (2007) A Neuroligin-3 Mutation Implicated in Autism Increases Inhibitory Synaptic Transmission in Mice. Science (80-) 318:71–76. https://doi.org/10.1126/science.1146221.
Trevisan DA, Roberts N, Lin C, Birmingham E (2017) How do adults and teens with self-declared Autism Spectrum Disorder experience eye contact? A qualitative analysis of first-hand accounts. PLoS ONE 12:e0188446. https://doi.org/10.1371/journal.pone.0188446. (PMID: 10.1371/journal.pone.0188446291826435705114)
Tucha O, Mecklinger L, Laufkötter R, Klein HE, Walitza S, Lange KW (2006) Methylphenidate-induced improvements of various measures of attention in adults with attention deficit hyperactivity disorder. J Neural Transm 113:1575–1592. https://doi.org/10.1007/s00702-005-0437-7. (PMID: 10.1007/s00702-005-0437-716897610)
Zeleznikow-Johnston A, Burrows EL, Renoir T, Hannan AJ (2017) Environmental enrichment enhances cognitive flexibility in C57BL/6 mice on a touchscreen reversal learning task. Neuropharmacology 117:219–226. https://doi.org/10.1016/j.neuropharm.2017.02.009. (PMID: 10.1016/j.neuropharm.2017.02.00928196627)
معلومات مُعتمدة: 1111552 National Health and Medical Research Council-Australian Research Council; FT100100835 Australian Research Council
فهرسة مساهمة: Keywords: Attention orienting; Autism spectrum disorder; Mouse model; Mouse-Posner task; Neuroligin-3 R451C mutation; Touchscreen test
المشرفين على المادة: 57WVB6I2W0 (Atomoxetine Hydrochloride)
0 (Neuroligins)
تواريخ الأحداث: Date Created: 20240103 Date Completed: 20240226 Latest Revision: 20240226
رمز التحديث: 20240226
DOI: 10.1007/s00213-023-06520-6
PMID: 38170320
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-2072
DOI:10.1007/s00213-023-06520-6