دورية أكاديمية

Thermal Hall effects due to topological spin fluctuations in YMnO 3 .

التفاصيل البيبلوغرافية
العنوان: Thermal Hall effects due to topological spin fluctuations in YMnO 3 .
المؤلفون: Kim HL; Center for Quantum Materials & Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea.; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea., Saito T; Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan., Yang H; Center for Quantum Materials & Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea.; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea., Ishizuka H; Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8551, Japan., Coak MJ; Center for Quantum Materials & Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea.; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea.; Department of Physics, University of Warwick, Coventry, CV4 7AL, UK., Lee JH; Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea., Sim H; Center for Quantum Materials & Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea.; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea., Oh YS; Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea., Nagaosa N; RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan. nagaosa@riken.jp., Park JG; Center for Quantum Materials & Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea. jgpark10@snu.ac.kr.; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea. jgpark10@snu.ac.kr.; Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea. jgpark10@snu.ac.kr.
المصدر: Nature communications [Nat Commun] 2024 Jan 04; Vol. 15 (1), pp. 243. Date of Electronic Publication: 2024 Jan 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مستخلص: The thermal Hall effect in magnetic insulators has been considered a powerful method for examining the topological nature of charge-neutral quasiparticles such as magnons. Yet, unlike the kagome system, the triangular lattice has received less attention for studying the thermal Hall effect because the scalar spin chirality cancels out between adjacent triangles. However, such cancellation cannot be perfect if the triangular lattice is distorted. Here, we report that the trimerized triangular lattice of multiferroic hexagonal manganite YMnO 3 produces a highly unusual thermal Hall effect under an applied magnetic field. Our theoretical calculations demonstrate that the thermal Hall conductivity is related to the splitting of the otherwise degenerate two chiralities of its 120˚ magnetic structure. Our result is one of the most unusual cases of topological physics due to this broken Z 2 symmetry of the chirality in the supposedly paramagnetic state of YMnO 3 , due to strong topological spin fluctuations with the additional intricacy of a Dzyaloshinskii-Moriya interaction.
(© 2024. The Author(s).)
References: Hall, E. H. On a new action of the magnet on electric currents. Am. J. Math. 2, 287 (1879). (PMID: 10.2307/2369245)
Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980). (PMID: 10.1103/PhysRevLett.45.494)
Strohm, C., Rikken, G. L. J. A. & Wyder, P. Phenomenological evidence for the phonon Hall effect. Phys. Rev. Lett. 95, 155901 (2005). (PMID: 10.1103/PhysRevLett.95.15590116241740)
Onose, Y. et al. Observation of the magnon Hall effect. Science (80-.) 329, 297–299 (2010). (PMID: 10.1126/science.1188260)
Hirschberger, M., Krizan, J. W., Cava, R. J. & Ong, N. P. Large thermal Hall conductivity of neutral spin excitations in a frustrated quantum magnet. Science (80-.) 348, 106–109 (2015). (PMID: 10.1126/science.1257340)
Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018). (PMID: 10.1038/s41586-018-0274-029995863)
Grissonnanche, G. et al. Giant thermal Hall conductivity in the pseudogap phase of cuprate superconductors. Nature 571, 376–380 (2019). (PMID: 10.1038/s41586-019-1375-031316196)
Sim, S. et al. Sizable suppression of thermal hall effect upon isotopic substitution in SrTiO 3 . Phys. Rev. Lett. 126, 015901 (2021). (PMID: 10.1103/PhysRevLett.126.01590133480802)
Li, X., Fauqué, B., Zhu, Z. & Behnia, K. Phonon thermal Hall effect in strontium titanate. Phys. Rev. Lett. 124, 105901 (2020). (PMID: 10.1103/PhysRevLett.124.10590132216396)
Katsura, H., Nagaosa, N. & Lee, P. A. Theory of the thermal Hall effect in quantum magnets. Phys. Rev. Lett. 104, 066403 (2010). (PMID: 10.1103/PhysRevLett.104.06640320366838)
Van Aken, B. B., Palstra, T. T. M., Filippetti, A. & Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO 3 . Nat. Mater. 3, 164–170 (2004). (PMID: 10.1038/nmat108014991018)
Lee, S. et al. Giant magneto-elastic coupling in multiferroic hexagonal manganites. Nature 451, 805–808 (2008). (PMID: 10.1038/nature0650718273014)
Park, J. et al. Magnetic ordering and spin-liquid state of YMnO 3 . Phys. Rev. B 68, 104426 (2003). (PMID: 10.1103/PhysRevB.68.104426)
Sharma, P. A. et al. Thermal conductivity of geometrically frustrated, ferroelectric YMnO 3 : extraordinary spin–phonon interaction. Phys. Rev. Lett. 93, 177202 (2004). (PMID: 10.1103/PhysRevLett.93.17720215525119)
Oh, J. et al. Spontaneous decays of magneto-elastic excitations in non-collinear antiferromagnet (Y,Lu)MnO 3 . Nat. Commun. 7, 13146 (2016). (PMID: 10.1038/ncomms13146277590045075801)
Kim, K.-S., Lee, K. H., Chung, S. B. & Park, J.-G. Magnon topology and thermal Hall effect in trimerized triangular lattice antiferromagnet. Phys. Rev. B 100, 064412 (2019). (PMID: 10.1103/PhysRevB.100.064412)
Park, J. et al. Doping dependence of spin–lattice coupling and two-dimensional ordering in multiferroic hexagonal Y 1−x Lu x MnO 3 (0 < =x <=1). Phys. Rev. B 82, 054428 (2010). (PMID: 10.1103/PhysRevB.82.054428)
Czajka, P. et al. Planar thermal Hall effect of topological bosons in the Kitaev magnet α-RuCl 3 . Nat. Mater. 22, 36–41 (2023). (PMID: 10.1038/s41563-022-01397-w36396962)
Zhang, H. et al. Sample-dependent and sample-independent thermal transport properties of α-RuCl 3 . Phys. Rev. Mater. 7, 114403 (2023). (PMID: 10.1103/PhysRevMaterials.7.114403)
Gillig, M. et al. Phononic-magnetic dichotomy of the thermal Hall effect in the Kitaev material Na 2 Co 2 TeO 6 . Phys. Rev. Res. 5, 043110 (2023). (PMID: 10.1103/PhysRevResearch.5.043110)
Li, N. et al. Magnon-polaron driven thermal Hall effect in a Heisenberg-Kitaev antiferromagnet. Phys. Rev. B 108, L140402 (2023). (PMID: 10.1103/PhysRevB.108.L140402)
Kim, H.-L. et al. Modular thermal Hall effect measurement setup for fast-turnaround screening of materials over wide temperature range using capacitive thermometry. Rev. Sci. Instrum. 90, 103904 (2019). (PMID: 10.1063/1.5108512)
Kasahara, Y. et al. Unusual thermal Hall effect in a Kitaev spin liquid candidate α-RuCl 3 . Phys. Rev. Lett. 120, 217205 (2018). (PMID: 10.1103/PhysRevLett.120.21720529883185)
Hentrich, R. et al. Large thermal Hall effect in α-RuCl 3 : evidence for heat transport by Kitaev–Heisenberg paramagnons. Phys. Rev. B 99, 085136 (2019). (PMID: 10.1103/PhysRevB.99.085136)
Yokoi, T. et al. Half-integer quantized anomalous thermal Hall effect in the Kitaev material candidate α-RuCl 3 . Science (80-.) 373, 568–572 (2021). (PMID: 10.1126/science.aay5551)
Yang, H. et al. Significant thermal Hall effect in the 3d cobalt Kitaev system Na 2 Co 2 TeO 6 . Phys. Rev. B 106, L081116 (2022). (PMID: 10.1103/PhysRevB.106.L081116)
Bruin, J. A. N. et al. Robustness of the thermal Hall effect close to half-quantization in α-RuCl 3 . Nat. Phys. 18, 401–405 (2022). (PMID: 10.1038/s41567-021-01501-y)
Qin, T., Zhou, J. & Shi, J. Berry curvature and the phonon Hall effect. Phys. Rev. B 86, 104305 (2012). (PMID: 10.1103/PhysRevB.86.104305)
Bonini, J. et al. Frequency splitting of chiral phonons from broken time-reversal symmetry in CrI 3 . Phys. Rev. Lett. 130, 086701 (2023). (PMID: 10.1103/PhysRevLett.130.08670136898102)
Solovyev, I. V., Valentyuk, M. V. & Mazurenko, V. V. Magnetic structure of hexagonal YMnO 3 and LuMnO 3 from a microscopic point of view. Phys. Rev. B 86, 054407 (2012). (PMID: 10.1103/PhysRevB.86.054407)
معلومات مُعتمدة: 2020R1A3B2079375 National Research Foundation of Korea (NRF)
تواريخ الأحداث: Date Created: 20240103 Latest Revision: 20240107
رمز التحديث: 20240108
مُعرف محوري في PubMed: PMC10764330
DOI: 10.1038/s41467-023-44448-9
PMID: 38172119
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-023-44448-9