دورية أكاديمية

Mast cell stabilizer, an anti-allergic drug, reduces ventricular arrhythmia risk via modulation of neuroimmune interaction.

التفاصيل البيبلوغرافية
العنوان: Mast cell stabilizer, an anti-allergic drug, reduces ventricular arrhythmia risk via modulation of neuroimmune interaction.
المؤلفون: Wang Y; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Liu Z; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Zhou W; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Wang J; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Li R; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Peng C; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Jiao L; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Zhang S; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Liu Z; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Yu Z; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Sun J; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Deng Q; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Duan S; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Tan W; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Wang Y; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Song L; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Guo F; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Zhou Z; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Wang Y; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Zhou L; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China., Jiang H; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China. hong-jiang@whu.edu.cn., Yu L; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Taikang Center for Life and Medical Sciences of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, 430060, Hubei Province, People's Republic of China. lileiyu@whu.edu.cn.
المصدر: Basic research in cardiology [Basic Res Cardiol] 2024 Feb; Vol. 119 (1), pp. 75-91. Date of Electronic Publication: 2024 Jan 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Steinkopff Country of Publication: Germany NLM ID: 0360342 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1435-1803 (Electronic) Linking ISSN: 03008428 NLM ISO Abbreviation: Basic Res Cardiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Darmstadt, Steinkopff.
مواضيع طبية MeSH: Mast Cell Stabilizers* , Anti-Allergic Agents*, Humans ; Neuroimmunomodulation ; Arrhythmias, Cardiac/prevention & control ; Heart
مستخلص: Mast cells (MCs) are important intermediates between the nervous and immune systems. The cardiac autonomic nervous system (CANS) crucially modulates cardiac electrophysiology and arrhythmogenesis, but whether and how MC-CANS neuroimmune interaction influences arrhythmia remain unclear. Our clinical data showed a close relationship between serum levels of MC markers and CANS activity, and then we use mast cell stabilizers (MCSs) to alter this MC-CANS communication. MCSs, which are well-known anti-allergic agents, could reduce the risk of ventricular arrhythmia (VA) after myocardial infarction (MI). RNA-sequencing (RNA-seq) analysis to investigate the underlying mechanism by which MCSs could affect the left stellate ganglion (LSG), a key therapeutic target for modulating CANS, showed that the IL-6 and γ-aminobutyric acid (GABA)-ergic system may be involved in this process. Our findings demonstrated that MCSs reduce VA risk along with revealing the potential underlying antiarrhythmic mechanisms.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.)
References: Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, Deal BJ, Dickfeld T, Field ME, Fonarow GC, Gillis AM, Granger CB, Hammill SC, Hlatky MA, Joglar JA, Kay GN, Matlock DD, Myerburg RJ, Page RL (2018) 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol 72:e91–e220. https://doi.org/10.1016/j.jacc.2017.10.054. (PMID: 10.1016/j.jacc.2017.10.05429097296)
Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, Deal BJ, Dickfeld T, Field ME, Fonarow GC, Gillis AM, Granger CB, Hammill SC, Hlatky MA, Joglar JA, Kay GN, Matlock DD, Myerburg RJ, Page RL (2018) 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 138:e272–e391. https://doi.org/10.1161/CIR.0000000000000549. (PMID: 10.1161/CIR.000000000000054929084731)
Bauer A, Kantelhardt JW, Barthel P, Schneider R, Makikallio T, Ulm K, Hnatkova K, Schomig A, Huikuri H, Bunde A, Malik M, Schmidt G (2006) Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet 367:1674–1681. https://doi.org/10.1016/S0140-6736(06)68735-7. (PMID: 10.1016/S0140-6736(06)68735-716714188)
Behrens MM, Ali SS, Dugan LL (2008) Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci 28:13957–13966. https://doi.org/10.1523/JNEUROSCI.4457-08.2008. (PMID: 10.1523/JNEUROSCI.4457-08.2008190919842752712)
Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462. https://doi.org/10.1038/35013070. (PMID: 10.1038/3501307010839541)
Bowery NG, Brown DA (1974) Depolarizing actions of gamma-aminobutyric acid and related compounds on rat superior cervical ganglia in vitro. Br J Pharmacol 50:205–218. https://doi.org/10.1111/j.1476-5381.1974.tb08563.x. (PMID: 10.1111/j.1476-5381.1974.tb08563.x41541161776623)
Brown DA (2020) Neurons, receptors, and channels. Annu Rev Pharmacol Toxicol 60:9–30. https://doi.org/10.1146/annurev-pharmtox-010919-023755. (PMID: 10.1146/annurev-pharmtox-010919-02375531914894)
Caporali A, Sala-Newby GB, Meloni M, Graiani G, Pani E, Cristofaro B, Newby AC, Madeddu P, Emanueli C (2008) Identification of the prosurvival activity of nerve growth factor on cardiac myocytes. Cell Death Differ 15:299–311. https://doi.org/10.1038/sj.cdd.4402263. (PMID: 10.1038/sj.cdd.440226317992191)
Chen M, Liu Q, Zhou S (2016) The networks between the sympathetic nervous system and immune system in atherosclerosis. J Am Coll Cardiol 68:431–432. https://doi.org/10.1016/j.jacc.2016.04.049. (PMID: 10.1016/j.jacc.2016.04.04927443444)
Druart M, Nosten-Bertrand M, Poll S, Crux S, Nebeling F, Delhaye C, Dubois Y, Mittag M, Leboyer M, Tamouza R, Fuhrmann M, Le Magueresse C (2021) Elevated expression of complement C4 in the mouse prefrontal cortex causes schizophrenia-associated phenotypes. Mol Psychiatry 26:3489–3501. https://doi.org/10.1038/s41380-021-01081-6. (PMID: 10.1038/s41380-021-01081-633837272)
Emanueli C, Salis MB, Pinna A, Graiani G, Manni L, Madeddu P (2002) Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation 106:2257–2262. https://doi.org/10.1161/01.cir.0000033971.56802.c5. (PMID: 10.1161/01.cir.0000033971.56802.c512390957)
Forsythe P (2019) Mast Cells in neuroimmune interactions. Trends Neurosci 42:43–55. https://doi.org/10.1016/j.tins.2018.09.006. (PMID: 10.1016/j.tins.2018.09.00630293752)
Georgin-Lavialle S, Lhermitte L, Baude C, Barete S, Bruneau J, Launay JM, Chandesris MO, Hanssens K, de Gennes C, Damaj G, Lanternier F, Hamidou M, Lortholary O, Dubreuil P, Feger F, Lepelletier Y, Hermine O (2011) Blood CD34-c-Kit+ cell rate correlates with aggressive forms of systemic mastocytosis and behaves like a mast cell precursor. Blood 118:5246–5249. https://doi.org/10.1182/blood-2011-02-335950. (PMID: 10.1182/blood-2011-02-33595021878676)
Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ (2007) Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 8:1095–1104. https://doi.org/10.1038/ni1503. (PMID: 10.1038/ni150317767162)
Hasan W, Jama A, Donohue T, Wernli G, Onyszchuk G, Al-Hafez B, Bilgen M, Smith PG (2006) Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats. Brain Res 1124:142–154. https://doi.org/10.1016/j.brainres.2006.09.054. (PMID: 10.1016/j.brainres.2006.09.054170848221769447)
Heusch G, Deussen A, Thamer V (1985) Cardiac sympathetic nerve activity and progressive vasoconstriction distal to coronary stenoses: feed-back aggravation of myocardial ischemia. J Auton Nerv Syst 13:311–326. https://doi.org/10.1016/0165-1838(85)90020-7. (PMID: 10.1016/0165-1838(85)90020-74031366)
Hooshdaran B, Kolpakov MA, Guo X, Miller SA, Wang T, Tilley DG, Rafiq K, Sabri A (2017) Dual inhibition of cathepsin G and chymase reduces myocyte death and improves cardiac remodeling after myocardial ischemia reperfusion injury. Basic Res Cardiol 112:62. https://doi.org/10.1007/s00395-017-0652-z. (PMID: 10.1007/s00395-017-0652-z289135536287604)
Kolkhir P, Elieh-Ali-Komi D, Metz M, Siebenhaar F, Maurer M (2022) Understanding human mast cells: lesson from therapies for allergic and non-allergic diseases. Nat Rev Immunol 22:294–308. https://doi.org/10.1038/s41577-021-00622-y. (PMID: 10.1038/s41577-021-00622-y34611316)
Maun HR, Jackman JK, Choy DF, Loyet KM, Staton TL, Jia G, Dressen A, Hackney JA, Bremer M, Walters BT, Vij R, Chen X, Trivedi NN, Morando A, Lipari MT, Franke Y, Wu X, Zhang J, Liu J, Wu P, Chang D, Orozco LD, Christensen E, Wong M, Corpuz R, Hang JQ, Lutman J, Sukumaran S, Wu Y, Ubhayakar S, Liang X, Schwartz LB, Babina M, Woodruff PG, Fahy JV, Ahuja R, Caughey GH, Kusi A, Dennis MS, Eigenbrot C, Kirchhofer D, Austin CD, Wu LC, Koerber JT, Lee WP, Yaspan BL, Alatsis KR, Arron JR, Lazarus RA, Yi T (2019) An allosteric anti-tryptase antibody for the treatment of mast cell-mediated severe asthma. Cell 179(417–431):e419. https://doi.org/10.1016/j.cell.2019.09.009. (PMID: 10.1016/j.cell.2019.09.009)
Meloni M, Caporali A, Graiani G, Lagrasta C, Katare R, Van Linthout S, Spillmann F, Campesi I, Madeddu P, Quaini F, Emanueli C (2010) Nerve growth factor promotes cardiac repair following myocardial infarction. Circ Res 106:1275–1284. https://doi.org/10.1161/CIRCRESAHA.109.210088. (PMID: 10.1161/CIRCRESAHA.109.210088203602452881000)
Meng G, Zhou X, Wang M, Zhou L, Wang Z, Wang M, Deng J, Wang Y, Zhou Z, Zhang Y, Lai Y, Zhang Q, Yang X, Yu L, Jiang H (2019) Gut microbe-derived metabolite trimethylamine N-oxide activates the cardiac autonomic nervous system and facilitates ischemia-induced ventricular arrhythmia via two different pathways. EBioMedicine 44:656–664. https://doi.org/10.1016/j.ebiom.2019.03.066. (PMID: 10.1016/j.ebiom.2019.03.066309544576603492)
Miri A, Warriner CL, Seely JS, Elsayed GF, Cunningham JP, Churchland MM, Jessell TM (2017) Behaviorally selective engagement of short-latency effector pathways by motor cortex. Neuron 95(683–696):e611. https://doi.org/10.1016/j.neuron.2017.06.042. (PMID: 10.1016/j.neuron.2017.06.042)
Mohajeri M, Kovanen PT, Bianconi V, Pirro M, Cicero AFG, Sahebkar A (2019) Mast cell tryptase—marker and maker of cardiovascular diseases. Pharmacol Ther 199:91–110. https://doi.org/10.1016/j.pharmthera.2019.03.008. (PMID: 10.1016/j.pharmthera.2019.03.00830877022)
Mota CMD, Branco LGS, Morrison SF, Madden CJ (2020) Systemic serotonin inhibits brown adipose tissue sympathetic nerve activity via a GABA input to the dorsomedial hypothalamus, not via 5HT1A receptor activation in raphe pallidus. Acta Physiol (Oxf) 228:e13401. https://doi.org/10.1111/apha.13401. (PMID: 10.1111/apha.1340131599481)
Niccoli G, Montone RA, Sabato V, Crea F (2018) Role of allergic inflammatory cells in coronary artery disease. Circulation 138:1736–1748. https://doi.org/10.1161/CIRCULATIONAHA.118.035400. (PMID: 10.1161/CIRCULATIONAHA.118.03540030354461)
Nolte H, Spjeldnaes N, Kruse A, Windelborg B (1990) Histamine release from gut mast cells from patients with inflammatory bowel diseases. Gut 31:791–794. https://doi.org/10.1136/gut.31.7.791. (PMID: 10.1136/gut.31.7.79116951601378537)
Park GH, Noh H, Shao Z, Ni P, Qin Y, Liu D, Beaudreault CP, Park JS, Abani CP, Park JM, Le DT, Gonzalez SZ, Guan Y, Cohen BM, McPhie DL, Coyle JT, Lanz TA, Xi HS, Yin C, Huang W, Kim HY, Chung S (2020) Activated microglia cause metabolic disruptions in developmental cortical interneurons that persist in interneurons from individuals with schizophrenia. Nat Neurosci 23:1352–1364. https://doi.org/10.1038/s41593-020-00724-1. (PMID: 10.1038/s41593-020-00724-1330979217769122)
Perry JC, Bergamaschi CT, Campos RR, Silva AM, Tufik S (2014) Interconnectivity of sympathetic and sleep networks is mediated through reduction of gamma aminobutyric acidergic inhibition in the paraventricular nucleus. J Sleep Res 23:168–175. https://doi.org/10.1111/jsr.12110. (PMID: 10.1111/jsr.1211024283672)
Reid AC, Brazin JA, Morrey C, Silver RB, Levi R (2011) Targeting cardiac mast cells: pharmacological modulation of the local renin-angiotensin system. Curr Pharm Des 17:3744–3752. https://doi.org/10.2174/138161211798357908. (PMID: 10.2174/138161211798357908221038453298860)
Reid AC, Silver RB, Levi R (2007) Renin: at the heart of the mast cell. Immunol Rev 217:123–140. https://doi.org/10.1111/j.1600-065X.2007.00514.x. (PMID: 10.1111/j.1600-065X.2007.00514.x17498056)
Ridolo E, Triggiani M, Montagni M, Olivieri E, Ticinesi A, Nouvenne A, Magliacane D, de Crescenzo G, Meschi T (2013) Mastocytosis presenting as cardiac emergency. Intern Emerg Med 8:749–752. https://doi.org/10.1007/s11739-013-1012-0. (PMID: 10.1007/s11739-013-1012-024136074)
Rizas KD, Nieminen T, Barthel P, Zurn CS, Kahonen M, Viik J, Lehtimaki T, Nikus K, Eick C, Greiner TO, Wendel HP, Seizer P, Schreieck J, Gawaz M, Schmidt G, Bauer A (2014) Sympathetic activity-associated periodic repolarization dynamics predict mortality following myocardial infarction. J Clin Invest 124:1770–1780. https://doi.org/10.1172/JCI70085. (PMID: 10.1172/JCI70085246424673973112)
Schwartz PJ (2014) Cardiac sympathetic denervation to prevent life-threatening arrhythmias. Nat Rev Cardiol 11:346–353. https://doi.org/10.1038/nrcardio.2014.19. (PMID: 10.1038/nrcardio.2014.1924614115)
Schwartz PJ, Stone HL (1980) Left stellectomy in the prevention of ventricular fibrillation caused by acute myocardial ischemia in conscious dogs with anterior myocardial infarction. Circulation 62:1256–1265. https://doi.org/10.1161/01.cir.62.6.1256. (PMID: 10.1161/01.cir.62.6.12567438361)
Shah AS, El Ghormli L, Vajravelu ME, Bacha F, Farrell RM, Gidding SS, Levitt Katz LE, Tryggestad JB, White NH, Urbina EM (2019) Heart rate variability and cardiac autonomic dysfunction: prevalence, risk factors, and relationship to arterial stiffness in the treatment options for type 2 diabetes in adolescents and youth (TODAY) study. Diabetes Care 42:2143–2150. https://doi.org/10.2337/dc19-0993. (PMID: 10.2337/dc19-0993315012266804614)
Silver RB, Reid AC, Mackins CJ, Askwith T, Schaefer U, Herzlinger D, Levi R (2004) Mast cells: a unique source of renin. Proc Natl Acad Sci USA 101:13607–13612. https://doi.org/10.1073/pnas.0403208101. (PMID: 10.1073/pnas.040320810115342908518801)
Sun J, Sukhova GK, Wolters PJ, Yang M, Kitamoto S, Libby P, MacFarlane LA, Mallen-St Clair J, Shi GP (2007) Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med 13:719–724. https://doi.org/10.1038/nm1601. (PMID: 10.1038/nm160117546038)
Szodorai E, Bampali K, Romanov RA, Kasper S, Hokfelt T, Ernst M, Lubec G, Harkany T (2018) Diversity matters: combinatorial information coding by GABAA receptor subunits during spatial learning and its allosteric modulation. Cell Signal 50:142–159. https://doi.org/10.1016/j.cellsig.2018.07.003. (PMID: 10.1016/j.cellsig.2018.07.00330006122)
Tang X, Jaenisch R, Sur M (2021) The role of GABAergic signalling in neurodevelopmental disorders. Nat Rev Neurosci 22:290–307. https://doi.org/10.1038/s41583-021-00443-x. (PMID: 10.1038/s41583-021-00443-x337722269001156)
Thackeray JT, Hupe HC, Wang Y, Bankstahl JP, Berding G, Ross TL, Bauersachs J, Wollert KC, Bengel FM (2018) Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J Am Coll Cardiol 71:263–275. https://doi.org/10.1016/j.jacc.2017.11.024. (PMID: 10.1016/j.jacc.2017.11.02429348018)
Undem BJ, Hubbard WC, Christian EP, Weinreich D (1990) Mast cells in the guinea pig superior cervical ganglion: a functional and histological assessment. J Auton Nerv Syst 30:75–87. https://doi.org/10.1016/0165-1838(90)90164-e. (PMID: 10.1016/0165-1838(90)90164-e1693391)
Vaseghi M, Gima J, Kanaan C, Ajijola OA, Marmureanu A, Mahajan A, Shivkumar K (2014) Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: intermediate and long-term follow-up. Heart Rhythm 11:360–366. https://doi.org/10.1016/j.hrthm.2013.11.028. (PMID: 10.1016/j.hrthm.2013.11.02824291775)
Wang Y, Jiang W, Chen H, Zhou H, Liu Z, Liu Z, Liu Z, Zhou Y, Zhou X, Yu L, Jiang H (2021) Sympathetic nervous system mediates cardiac remodeling after myocardial infarction in a circadian disruption model. Front Cardiovasc Med 8:668387. https://doi.org/10.3389/fcvm.2021.668387. (PMID: 10.3389/fcvm.2021.668387338425668032890)
Wang Y, Yu L, Meng G, Wang Z, Zhou Z, Zhang Y, Xia H, Jiang H (2018) Mast cells modulate the pathogenesis of leptin-induced left stellate ganglion activation in canines. Int J Cardiol 269:259–264. https://doi.org/10.1016/j.ijcard.2018.07.126. (PMID: 10.1016/j.ijcard.2018.07.12630072157)
Weinreich D, Undem BJ (1987) Immunological regulation of synaptic transmission in isolated guinea pig autonomic ganglia. J Clin Invest 79:1529–1532. https://doi.org/10.1172/JCI112984. (PMID: 10.1172/JCI1129842437156424430)
Wieck A, Andersen SL, Brenhouse HC (2013) Evidence for a neuroinflammatory mechanism in delayed effects of early life adversity in rats: relationship to cortical NMDA receptor expression. Brain Behav Immun 28:218–226. https://doi.org/10.1016/j.bbi.2012.11.012. (PMID: 10.1016/j.bbi.2012.11.01223207107)
Wilde AA, Bhuiyan ZA, Crotti L, Facchini M, De Ferrari GM, Paul T, Ferrandi C, Koolbergen DR, Odero A, Schwartz PJ (2008) Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. N Engl J Med 358:2024–2029. https://doi.org/10.1056/NEJMoa0708006. (PMID: 10.1056/NEJMoa070800618463378)
Ye TY, Lai YQ, Wang ZY, Zhang XG, Meng GN, Zhou LP, Zhang YF, Zhou Z, Deng JL, Wang M, Wang YH, Zhang QQ, Zhou XY, Yu LL, Jiang H, Xiao XH (2019) Precise modulation of gold nanorods for protecting against malignant ventricular arrhythmias via near-infrared neuromodulation. Adv Funct Mater 29:1902128. https://doi.org/10.1002/Adfm.201902128. (PMID: 10.1002/Adfm.201902128)
Yu L, Wang Y, Zhou X, Huang B, Wang M, Li X, Meng G, Yuan S, Xia H, Jiang H (2018) Leptin injection into the left stellate ganglion augments ischemia-related ventricular arrhythmias via sympathetic nerve activation. Heart Rhythm 15:597–606. https://doi.org/10.1016/j.hrthm.2017.12.003. (PMID: 10.1016/j.hrthm.2017.12.00329229519)
Yu L, Zhou L, Cao G, Po SS, Huang B, Zhou X, Wang M, Yuan S, Wang Z, Wang S, Jiang H (2017) Optogenetic modulation of cardiac sympathetic nerve activity to prevent ventricular arrhythmias. J Am Coll Cardiol 70:2778–2790. https://doi.org/10.1016/j.jacc.2017.09.1107. (PMID: 10.1016/j.jacc.2017.09.110729191327)
Zeboudj L, Maitre M, Guyonnet L, Laurans L, Joffre J, Lemarie J, Bourcier S, Nour-Eldine W, Guerin C, Friard J, Wakkach A, Fabre E, Tedgui A, Mallat Z, Tharaux PL, Ait-Oufella H (2018) Selective EGF-receptor inhibition in CD4(+) T cells induces anergy and limits atherosclerosis. J Am Coll Cardiol 71:160–172. https://doi.org/10.1016/j.jacc.2017.10.084. (PMID: 10.1016/j.jacc.2017.10.08429325640)
Zeppenfeld K, Tfelt-Hansen J, de Riva M, Winkel BG, Behr ER, Blom NA, Charron P, Corrado D, Dagres N, de Chillou C, Eckardt L, Friede T, Haugaa KH, Hocini M, Lambiase PD, Marijon E, Merino JL, Peichl P, Priori SG, Reichlin T, Schulz-Menger J, Sticherling C, Tzeis S, Verstrael A, Volterrani M, Graaoup ESCSD (2022) 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J 43:3997–4126. https://doi.org/10.1093/eurheartj/ehac262. (PMID: 10.1093/eurheartj/ehac26236017572)
Zhang L, Guo F, Xu S, Deng Q, Xie M, Sun J, Kwok RTK, Lam JWY, Deng H, Jiang H, Yu L, Tang BZ (2023) AIEgen-based covalent organic frameworks for preventing malignant ventricular arrhythmias via local hyperthermia therapy. Adv Mater. https://doi.org/10.1002/adma.202304620. (PMID: 10.1002/adma.20230462038229552)
Zhou S, Chen LS, Miyauchi Y, Miyauchi M, Kar S, Kangavari S, Fishbein MC, Sharifi B, Chen PS (2004) Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res 95:76–83. https://doi.org/10.1161/01.RES.0000133678.22968.e3. (PMID: 10.1161/01.RES.0000133678.22968.e315166093)
معلومات مُعتمدة: 82241057 National Natural Science Foundation of China; 82270532 National Natural Science Foundation of China; 82370286 National Natural Science Foundation of China; 81970287 National Natural Science Foundation of China; 82100530 National Natural Science Foundation of China; 82200556 National Natural Science Foundation of China; 2021CFA010 Natural Science Foundation of Hubei Province
فهرسة مساهمة: Keywords: Cardiac autonomic nervous system; Mast cell stabilizers; Neuroimmune interaction; Ventricular arrhythmia
المشرفين على المادة: 0 (Mast Cell Stabilizers)
0 (Anti-Allergic Agents)
تواريخ الأحداث: Date Created: 20240103 Date Completed: 20240205 Latest Revision: 20240205
رمز التحديث: 20240205
DOI: 10.1007/s00395-023-01024-y
PMID: 38172251
قاعدة البيانات: MEDLINE
الوصف
تدمد:1435-1803
DOI:10.1007/s00395-023-01024-y