دورية أكاديمية

Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration.

التفاصيل البيبلوغرافية
العنوان: Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration.
المؤلفون: Little AS; Duchossois Family Institute, University of Chicago, Chicago, IL, USA.; Department of Microbiology, University of Chicago, Chicago, IL, USA., Younker IT; Duchossois Family Institute, University of Chicago, Chicago, IL, USA.; Department of Microbiology, University of Chicago, Chicago, IL, USA., Schechter MS; Duchossois Family Institute, University of Chicago, Chicago, IL, USA.; Department of Microbiology, University of Chicago, Chicago, IL, USA., Bernardino PN; Duchossois Family Institute, University of Chicago, Chicago, IL, USA.; Department of Microbiology, University of Chicago, Chicago, IL, USA., Méheust R; Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d'Évry, Université Paris-Saclay, CNRS, Evry, France., Stemczynski J; Duchossois Family Institute, University of Chicago, Chicago, IL, USA.; Department of Microbiology, University of Chicago, Chicago, IL, USA., Scorza K; Duchossois Family Institute, University of Chicago, Chicago, IL, USA.; Department of Microbiology, University of Chicago, Chicago, IL, USA., Mullowney MW; Duchossois Family Institute, University of Chicago, Chicago, IL, USA., Sharan D; Duchossois Family Institute, University of Chicago, Chicago, IL, USA.; Department of Microbiology, University of Chicago, Chicago, IL, USA., Waligurski E; Duchossois Family Institute, University of Chicago, Chicago, IL, USA., Smith R; Duchossois Family Institute, University of Chicago, Chicago, IL, USA., Ramanswamy R; Duchossois Family Institute, University of Chicago, Chicago, IL, USA., Leiter W; Duchossois Family Institute, University of Chicago, Chicago, IL, USA., Moran D; Duchossois Family Institute, University of Chicago, Chicago, IL, USA., McMillin M; Duchossois Family Institute, University of Chicago, Chicago, IL, USA., Odenwald MA; Duchossois Family Institute, University of Chicago, Chicago, IL, USA.; Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL, USA., Iavarone AT; QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA, USA., Sidebottom AM; Duchossois Family Institute, University of Chicago, Chicago, IL, USA., Sundararajan A; Duchossois Family Institute, University of Chicago, Chicago, IL, USA., Pamer EG; Duchossois Family Institute, University of Chicago, Chicago, IL, USA.; Department of Microbiology, University of Chicago, Chicago, IL, USA.; Section of Infectious Diseases & Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA., Eren AM; Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany.; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenbug, Germany., Light SH; Duchossois Family Institute, University of Chicago, Chicago, IL, USA. samlight@uchicago.edu.; Department of Microbiology, University of Chicago, Chicago, IL, USA. samlight@uchicago.edu.
المصدر: Nature microbiology [Nat Microbiol] 2024 Jan; Vol. 9 (1), pp. 55-69. Date of Electronic Publication: 2024 Jan 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101674869 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2058-5276 (Electronic) Linking ISSN: 20585276 NLM ISO Abbreviation: Nat Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Publishing Group, [2016]-
مواضيع طبية MeSH: Ecosystem* , Bacteria*/genetics , Bacteria*/metabolism, Humans ; Anaerobiosis ; Oxidoreductases/genetics ; Oxidoreductases/metabolism ; Respiration
مستخلص: Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family (Sutterella wadsworthensis, Eggerthella lenta and Holdemania filiformis), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme-substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Moodie, A. D. & Ingledew, W. J. Microbial anaerobic respiration. Adv. Microb. Physiol. 31, 225–269 (1990). (PMID: 2264524)
Gibson, G. R., Macfarlane, G. T. & Cummings, J. H. Occurrence of sulphate‐reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J. Appl. Bacteriol. 65, 103–111 (1988). (PMID: 3204069)
Smith, N. W. et al. Hydrogen cross-feeders of the human gastrointestinal tract. Gut Microbes 10, 270–288 (2019). (PMID: 30563420)
Butler, N. L. et al. Bacteroides fragilis maintains concurrent capability for anaerobic and nanaerobic respiration. J. Bacteriol. 205, e0038922 (2023). (PMID: 36475831)
Schubert, C. & Unden, G. C 4 -dicarboxylates as growth substrates and signaling molecules for commensal and pathogenic enteric bacteria in mammalian intestine. J. Bacteriol. 204, e0054521 (2022). (PMID: 34978458)
Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010). (PMID: 208649962946174)
Winter, S. E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013). (PMID: 233932664004111)
Miller, B. M. et al. Anaerobic respiration of NOX1-derived hydrogen peroxide licenses bacterial growth at the colonic surface. Cell Host Microbe 28, 789–797.e5 (2020). (PMID: 333017187758056)
Rekdal, V. M. et al. A widely distributed metalloenzyme class enables gut microbial metabolism of host- and diet-derived catechols. eLife 9, e50845 (2020).
Ravcheev, D. A. & Thiele, I. Systematic genomic analysis reveals the complementary aerobic and anaerobic respiration capacities of the human gut microbiota. Front. Microbiol. 5, 674 (2014). (PMID: 255386944257093)
Bilous, P. T., Cole, S. T., Anderson, W. F. & Weiner, J. H. Nucleotide sequence of the dmsABC operon encoding the anaerobic dimethylsulphoxide reductase of Escherichia coli. Mol. Microbiol. 2, 785–795 (1988). (PMID: 3062312)
Silvestro, A., Pommier, J., Pascal, M. C. & Giordano, G. The inducible trimethylamine N-oxide reductase of Escherichia coli K12: its localization and inducers. Biochim. Biophys. Acta 999, 208–216 (1989). (PMID: 2512991)
Heinzinger, N. K. et al. Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J. Bacteriol. 177, 2813–2820 (1995). (PMID: 7751291176953)
Hensel, M. et al. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol. Microbiol. 32, 275–287 (1999). (PMID: 10231485)
Cruz-García, C. et al. Respiratory nitrate ammonification by Shewanella oneidensis MR-1. J. Bacteriol. 189, 656–662 (2007). (PMID: 17098906)
Krafft, T. et al. Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulphide reductase. Eur. J. Biochem. 206, 503–510 (1992). (PMID: 1597189)
Saltikov, C. W. & Newman, D. K. Genetic identification of a respiratory arsenate reductase. Proc. Natl Acad. Sci. USA 100, 10983–10988 (2003). (PMID: 12939408196913)
Krafft, T. et al. Cloning and sequencing of the genes encoding the periplasmic-cytochrome B-containing selenate reductase of Thauera selenatis. DNA Seq. 10, 365–377 (2000). (PMID: 10826693)
Bender, K. S. et al. Identification, characterization, and classification of genes encoding perchlorate reductase. J. Bacteriol. 187, 5090–5096 (2005). (PMID: 160302011196028)
McPherson, M. J. et al. Respiratory nitrate reductase of Escherichia coli. Sequence identification of the large subunit gene. FEBS Lett. 177, 260–264 (1984). (PMID: 6094247)
Lledó, B. et al. Respiratory nitrate reductase from haloarchaeon Haloferax mediterranei: biochemical and genetic analysis. Biochim. Biophys. Acta 1674, 50–59 (2004). (PMID: 15342113)
Yamazaki, C. et al. A novel dimethylsulfoxide reductase family of molybdenum enzyme, Idr, is involved in iodate respiration by Pseudomonas sp. SCT. Environ. Microbiol. 22, 2196–2212 (2020). (PMID: 32190953)
Cole, S. T. Nucleotide sequence coding for the flavoprotein subunit of the fumarate reductase of Escherichia coli. Eur. J. Biochem. 122, 479–484 (1982). (PMID: 7037404)
Light, S. H. et al. Extracellular electron transfer powers flavinylated extracellular reductases in Gram-positive bacteria. Proc. Natl Acad. Sci. USA 116, 26892–26899 (2019). (PMID: 318189556936397)
Bogachev, A. et al. Urocanate reductase: identification of a novel anaerobic respiratory pathway in Shewanella oneidensis MR-1. Mol. Microbiol. 86, 1452–1463 (2012). (PMID: 23078170)
Speich, N. et al. Adenylylsulphate reductase from the sulphate-reducing archaeon Archaeoglobus fulgidus: cloning and characterization of the genes and comparison of the enzyme with other iron-sulphur flavoproteins. Microbiology 140, 1273–1284 (1994). (PMID: 8081492)
Méheust, R. et al. Post-translational flavinylation is associated with diverse extracytosolic redox functionalities throughout bacterial life. eLife 10, e66878 (2021). (PMID: 340322128238504)
Mikoulinskaia, O. et al. Cytochrome c-dependent methacrylate reductase from Geobacter sulfurreducens AM-1. Eur. J. Biochem. 263, 346–352 (1999). (PMID: 10406941)
Jardim-Messeder, D. et al. Fumarate reductase superfamily: a diverse group of enzymes whose evolution is correlated to the establishment of different metabolic pathways. Mitochondrion 34, 56–66 (2017). (PMID: 28088649)
Le, C. et al. Emerging chemical diversity and potential applications of enzymes in the DMSO reductase superfamily. Annu. Rev. Biochem. 91, 475–504 (2022). (PMID: 35320685)
Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021). (PMID: 32690973)
Wu, S. et al. GMrepo: a database of curated and consistently annotated human gut metagenomes. Nucleic Acids Res. 48, D545–D553 (2020). (PMID: 31504765)
Diaz-Gerevini, G. T. et al. Beneficial action of resveratrol: how and why? Nutrition 32, 174–178 (2016). (PMID: 26706021)
Bentley, R. & Haslam, E. The shikimate pathway—a metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol. 25, 307–384 (1990). (PMID: 2279393)
Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl Acad. Sci. USA 110, 7820–7825 (2013). (PMID: 236103933651434)
Dong, X. et al. Genetic manipulation of the human gut bacterium Eggerthella lenta reveals a widespread family of transcriptional regulators. Nat. Commun. 13, 7624 (2022). (PMID: 364943369734109)
Leys, D. et al. Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1. Nat. Struct. Biol. 6, 1113–1117 (1999). (PMID: 10581551)
Pankhurst, K. L. et al. A proton delivery pathway in the soluble fumarate reductase from Shewanella frigidimarina. J. Biol. Chem. 281, 20589–20597 (2006). (PMID: 16699170)
Venskutonytė, R. et al. Structural characterization of the microbial enzyme urocanate reductase mediating imidazole propionate production. Nat. Commun. 12, 1347 (2021). (PMID: 336493317921117)
Heidelberg, J. F. et al. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat. Biotechnol. 20, 1118–1123 (2002). (PMID: 12368813)
Hau, H. H. & Gralnick, J. A. Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 61, 237–258 (2007). (PMID: 18035608)
Ikeda, S. et al. Shewanella oneidensis MR-1 as a bacterial platform for electro-biotechnology. Essays Biochem. 65, 355–364 (2021). (PMID: 337694888314016)
Koh, A. et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947–961.e17 (2018). (PMID: 30401435)
Dodd, D. et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648–652 (2017). (PMID: 291685025850949)
Steed, A. L. et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 357, 498–502 (2017). (PMID: 287749285753406)
Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295–298 (2013). (PMID: 238690203736355)
Koppel, N. et al. Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins. eLife 7, e33953 (2018). (PMID: 297617855953540)
Alexander, M. et al. Human gut bacterial metabolism drives Th17 activation and colitis. Cell Host Microbe 30, 17–30.e9 (2022). (PMID: 34822777)
Bess, E. N. et al. Genetic basis for the cooperative bioactivation of plant lignans by Eggerthella lenta and other human gut bacteria. Nat. Microbiol. 5, 56–66 (2020). (PMID: 31686027)
Maini Rekdal, V. et al. Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism. Science 364, eaau6323 (2019). (PMID: 31196984)
Sasikaran, J. et al. Bacterial itaconate degradation promotes pathogenicity. Nat. Chem. Biol. 10, 371–377 (2014). (PMID: 24657929)
Wang, H. et al. An essential bifunctional enzyme in Mycobacterium tuberculosis for itaconate dissimilation and leucine catabolism. Proc. Natl Acad. Sci. USA 116, 15907–15913 (2019). (PMID: 313205886689899)
Zhang, T., Hasegawa, Y. & Waldor, M. K. A bile metabolite atlas reveals infection-triggered interorgan mediators of intestinal homeostasis and defense. Preprint at bioRxiv https://doi.org/10.1101/2023.03.04.531105 (2023).
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010). (PMID: 202110232848648)
Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res 49, D412–D419 (2021). (PMID: 33125078)
Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998). (PMID: 9918945)
Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019). (PMID: 30778233)
Katoh, K. & Standley, D. M. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 32, 1933–1942 (2016). (PMID: 271536884920119)
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009). (PMID: 195059452712344)
Nguyen, L.-T. et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015). (PMID: 25371430)
Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017). (PMID: 284813635453245)
Hoang, D. T. et al. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018). (PMID: 29077904)
Delmont, T. O. & Eren, A. M. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ 6, e4320 (2018). (PMID: 294233455804319)
Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). (PMID: 2231712)
García-Villalba, R. et al. Metabolism of different dietary phenolic compounds by the urolithin-producing human-gut bacteria Gordonibacter urolithinfaciens and Ellagibacter isourolithinifaciens. Food Funct. 11, 7012–7022 (2020). (PMID: 32716447)
Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007). (PMID: 240396163772505)
Odenwald, M. A. et al. Bifidobacteria metabolize lactulose to optimize gut metabolites and prevent systemic infection in patients with liver disease. Nat. Microbiol. https://doi.org/10.1038/s41564-023-01493-w (2023).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). (PMID: 246954044103590)
Blanco-Miguez, A. et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat. Biotechnol 41, 1633–1644, https://doi.org/10.1038/s41587-023-01688-w (2023). (PMID: 10.1038/s41587-023-01688-w3682335610635831)
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). (PMID: 223882863322381)
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021). (PMID: 335908617931819)
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). (PMID: 24227677)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 255162814302049)
R Core Team R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2016); https://www.R-project.org/.
Zhang, Y., Parmigiani, G. & Johnson, W. E. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genom. Bioinform. 2, lqaa078 (2020). (PMID: 330156207518324)
Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics 35, 2084–2092 (2019). (PMID: 30395178)
Plumb, R. S. et al. UPLC/MS(E); a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun. Mass Spectrom. 20, 1989–1994 (2006). (PMID: 16755610)
Shliaha, P. V. et al. Effects of traveling wave ion mobility separation on data independent acquisition in proteomics studies. J. Proteome Res. 12, 2323–2339 (2013). (PMID: 23514362)
Helm, D. et al. Ion mobility tandem mass spectrometry enhances performance of bottom–up proteomics. Mol. Cell Proteom. 13, 3709–3715 (2014).
Distler, U. et al. Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. Nat. Methods 11, 167–170 (2014). (PMID: 24336358)
Distler, U. et al. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Nat. Protoc. 11, 795–812 (2016). (PMID: 27010757)
Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 50, D20–D26 (2022). (PMID: 34850941)
Rivera-Lugo, R. et al. Distinct energy-coupling factor transporter subunits enable flavin acquisition and extracytosolic trafficking for extracellular electron transfer in Listeria monocytogenes. mBio 14, e0308522 (2023). (PMID: 36744898)
Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2020).
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011). (PMID: 220393613197634)
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. https://doi.org/10.1038/nbt.3988 (2017).
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). (PMID: 15034147390337)
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020). (PMID: 320117007182206)
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). (PMID: 342658448371605)
Waterhouse, A. M. et al. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009). (PMID: 191510952672624)
معلومات مُعتمدة: K22 AI144031 United States AI NIAID NIH HHS; R35 GM146969 United States GM NIGMS NIH HHS; S10 OD020062 United States OD NIH HHS; T32 DK007074 United States DK NIDDK NIH HHS
المشرفين على المادة: Q4516562YH (itaconic acid)
EC 1.- (Oxidoreductases)
تواريخ الأحداث: Date Created: 20240104 Date Completed: 20240108 Latest Revision: 20240808
رمز التحديث: 20240809
مُعرف محوري في PubMed: PMC11055453
DOI: 10.1038/s41564-023-01560-2
PMID: 38177297
قاعدة البيانات: MEDLINE
الوصف
تدمد:2058-5276
DOI:10.1038/s41564-023-01560-2