دورية أكاديمية

Pseudogenes act as a neutral reference for detecting selection in prokaryotic pangenomes.

التفاصيل البيبلوغرافية
العنوان: Pseudogenes act as a neutral reference for detecting selection in prokaryotic pangenomes.
المؤلفون: Douglas GM; Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada. gavin.douglas@mcgill.ca.; McGill Genome Centre, McGill University, Montréal, Québec, Canada. gavin.douglas@mcgill.ca., Shapiro BJ; Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada. jesse.shapiro@mcgill.ca.; McGill Genome Centre, McGill University, Montréal, Québec, Canada. jesse.shapiro@mcgill.ca.; McGill Centre for Microbiome Research, McGill University, Montréal, Québec, Canada. jesse.shapiro@mcgill.ca.
المصدر: Nature ecology & evolution [Nat Ecol Evol] 2024 Feb; Vol. 8 (2), pp. 304-314. Date of Electronic Publication: 2024 Jan 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: England NLM ID: 101698577 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2397-334X (Electronic) Linking ISSN: 2397334X NLM ISO Abbreviation: Nat Ecol Evol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Springer Nature
مواضيع طبية MeSH: Pseudogenes* , Biological Evolution*, Genome ; Bacteria/genetics
مستخلص: A long-standing question is to what degree genetic drift and selection drive the divergence in rare accessory gene content between closely related bacteria. Rare genes, including singletons, make up a large proportion of pangenomes (all genes in a set of genomes), but it remains unclear how many such genes are adaptive, deleterious or neutral to their host genome. Estimates of species' effective population sizes (N e ) are positively associated with pangenome size and fluidity, which has independently been interpreted as evidence for both neutral and adaptive pangenome models. We hypothesized that pseudogenes, used as a neutral reference, could be used to distinguish these models. We find that most functional categories are depleted for rare pseudogenes when a genome encodes only a single intact copy of a gene family. In contrast, transposons are enriched in pseudogenes, suggesting they are mostly neutral or deleterious to the host genome. Thus, even if individual rare accessory genes vary in their effects on host fitness, we can confidently reject a model of entirely neutral or deleterious rare genes. We also define the ratio of singleton intact genes to singleton pseudogenes (s i /s p ) within a pangenome, compare this measure across 668 prokaryotic species and detect a signal consistent with the adaptive value of many rare accessory genes. Taken together, our work demonstrates that comparing with pseudogenes can improve inferences of the evolutionary forces driving pangenome variation.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Innamorati, K. A., Earl, J. P., Aggarwal, S. D., Ehrlich, G. D. & Hiller, N. L. in The Pangenome: Diversity, Dynamics and Evolution of Genomes (eds Tettelin, H. & Medini, D.) 51–87 (Springer, 2020); https://doi.org/10.1007/978-3-030-38281-0_3.
Sela, I., Wolf, Y. I. & Koonin, E. V. Theory of prokaryotic genome evolution. Proc. Natl Acad. Sci. USA 113, 11399–11407 (2016). (PMID: 27702904506832110.1073/pnas.1614083113)
Bobay, L. M. & Ochman, H. Factors driving effective population size and pan-genome evolution in bacteria. BMC Evol. Biol. 18, 153 (2018). (PMID: 30314447618613410.1186/s12862-018-1272-4)
McInerney, J. O., McNally, A. & O'Connell, M. J. Why prokaryotes have pangenomes. Nat. Microbiol. 2, 17040 (2017). (PMID: 2835000210.1038/nmicrobiol.2017.40)
Kimura, M. & Crow, J. F. The number of alleles that can be maintained in a finite population. Genetics 49, 725–738 (1964). (PMID: 14156929121060910.1093/genetics/49.4.725)
Andreani, N. A., Hesse, E. & Vos, M. Prokaryote genome fluidity is dependent on effective population size. ISME J. 11, 1719–1721 (2017). (PMID: 28362722552015410.1038/ismej.2017.36)
Vos, M. & Eyre-Walker, A. Are pangenomes adaptive or not? Nat. Microbiol. 2, 1576 (2017). (PMID: 2917670210.1038/s41564-017-0067-5)
Danneels, B., Pinto-Carbó, M. & Carlier, A. Patterns of nucleotide deletion and insertion inferred from bacterial pseudogenes. Genome Biol. Evol. 10, 1792–1802 (2018). (PMID: 29982456605427010.1093/gbe/evy140)
Kuo, C.-H. & Ochman, H. The extinction dynamics of bacterial pseudogenes. PLoS Genet. 6, e1001050 (2010). (PMID: 20700439291685310.1371/journal.pgen.1001050)
Wolf, Y. I., Makarova, K. S., Lobkovsky, A. E. & Koonin, E. V. Two fundamentally different classes of microbial genes. Nat. Microbiol. 2, 16208 (2016). (PMID: 2781966310.1038/nmicrobiol.2016.208)
Galperin, M. Y. et al. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res. 49, D274–D281 (2021). (PMID: 3316703110.1093/nar/gkaa1018)
Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018). (PMID: 3014850310.1038/nbt.4229)
Kislyuk, A. O., Haegeman, B., Bergman, N. H. & Weitz, J. S. Genomic fluidity: an integrative view of gene diversity within microbial populations. BMC Genomics 12, 32 (2011). (PMID: 21232151303054910.1186/1471-2164-12-32)
Rocha, E. P. C. et al. Comparisons of dN/dS are time dependent for closely related bacterial genomes. J. Theor. Biol. 239, 226–235 (2006). (PMID: 1623901410.1016/j.jtbi.2005.08.037)
Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. 4, e1000304 (2008). (PMID: 19081788259631210.1371/journal.pgen.1000304)
Boucher, Y. et al. Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations. mBio 2, e00335-10 (2011). (PMID: 21486909307364110.1128/mBio.00335-10)
Niehus, R., Mitri, S., Fletcher, A. G. & Foster, K. R. Migration and horizontal gene transfer divide microbial genomes into multiple niches. Nat. Commun. 6, 8924 (2015). (PMID: 2659244310.1038/ncomms9924)
Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011). (PMID: 2203730810.1038/nature10571)
Hottes, A. K. et al. Bacterial adaptation through loss of function. PLoS Genet. 9, e1003617 (2013). (PMID: 23874220370884210.1371/journal.pgen.1003617)
Oren, Y. et al. Transfer of noncoding DNA drives regulatory rewiring in bacteria. Proc. Natl Acad. Sci. USA 111, 16112–16117 (2014). (PMID: 25313052423456910.1073/pnas.1413272111)
Peng, T., Lin, J., Xu, Y.-Z. & Zhang, Y. Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria. ISME J. 10, 2048–2059 (2016). (PMID: 26800233502916810.1038/ismej.2015.246)
Schlüter, A. et al. Erythromycin resistance-conferring plasmid pRSB105, isolated from a sewage treatment plant, harbors a new macrolide resistance determinant, an integron-containing Tn402-like element, and a large region of unknown function. Appl. Environ. Microbiol. 73, 1952–1960 (2007). (PMID: 17261525182879810.1128/AEM.02159-06)
Bobay, L.-M., Rocha, E. P. C. & Touchon, M. The adaptation of temperate bacteriophages to their host genomes. Mol. Biol. Evol. 30, 737–751 (2013). (PMID: 2324303910.1093/molbev/mss279)
McKerral, J. C. et al. The promise and pitfalls of prophages. Preprint at bioRxiv https://doi.org/10.1101/2023.04.20.537752 (2023).
Giovannoni, S. J., Cameron Thrash, J. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014). (PMID: 24739623481761410.1038/ismej.2014.60)
Daubin, V. & Moran, N. A. Comment on ‘The Origins of Genome Complexity’. Science 306, 978 (2004). (PMID: 1552842910.1126/science.1098469)
Lynch, M. & Conery, J. S. Response to comment on ‘The Origins of Genome Complexity’. Science 306, 978 (2004). (PMID: 10.1126/science.1100559)
Sharp, P. M., Bailes, E., Grocock, R. J., Peden, J. F. & Sockett, R. E. Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res. 33, 1141–1153 (2005). (PMID: 1572874354943210.1093/nar/gki242)
Koonin, E. V. Splendor and misery of adaptation, or the importance of neutral null for understanding evolution. BMC Biol. 14, 114 (2016). (PMID: 28010725518040510.1186/s12915-016-0338-2)
Rocha, E. P. C. Neutral theory, microbial practice: challenges in bacterial population genetics. Mol. Biol. Evol. 35, 1338–1347 (2018). (PMID: 2968418310.1093/molbev/msy078)
Li, W. & Godzik, A. CD-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006). (PMID: 1673169910.1093/bioinformatics/btl158)
Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021). (PMID: 34597405866261310.1093/molbev/msab293)
Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5,090 organisms and 2,502 viruses. Nucleic Acids Res. 47, D309–D314 (2019). (PMID: 3041861010.1093/nar/gky1085)
Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021). (PMID: 33828273802639910.1038/s41592-021-01101-x)
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017). (PMID: 10.32614/RJ-2017-066)
Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017). (PMID: 28787424643652810.1038/nbt.3893)
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015). (PMID: 25977477448438710.1101/gr.186072.114)
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014). (PMID: 2464206310.1093/bioinformatics/btu153)
Tonkin-Hill, G. et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 21, 180 (2020). (PMID: 32698896737692410.1186/s13059-020-02090-4)
Syberg-Olsen, M. J., Garber, A. I., Keeling, P. J., McCutcheon, J. P. & Husnik, F. Pseudofinder: detection of pseudogenes in prokaryotic genomes. Mol. Biol. Evol. 39, msac153 (2022). (PMID: 35801562933656510.1093/molbev/msac153)
The UniProt Consortium. The universal protein resource. Nucleic Acids Res. 36, D190–D195 (2008). (PMID: 10.1093/nar/gkm895)
Tange, O. GNU parallel: the command-line power tool. Login USENIX Mag. 36, 42–47 (2011).
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). (PMID: 1503414739033710.1093/nar/gkh340)
Kosakovsky Pond, S. L. et al. HyPhy 2.5—a customizable platform for evolutionary hypothesis testing using phylogenies. Mol. Biol. Evol. 37, 295–299 (2020). (PMID: 3150474910.1093/molbev/msz197)
Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426 (1986). (PMID: 3444411)
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Gu, Z. Complex heatmap visualization. iMeta 1, e43 (2022). (PMID: 10.1002/imt2.43)
Douglas, G. M. & Shapiro, B. J. Data and code for ‘Pseudogenes act as a neutral reference for detecting selection in prokaryotic pangenomes’. Zenodo https://doi.org/10.5281/zenodo.7942836 (2023).
تواريخ الأحداث: Date Created: 20240104 Date Completed: 20240214 Latest Revision: 20240722
رمز التحديث: 20240723
DOI: 10.1038/s41559-023-02268-6
PMID: 38177690
قاعدة البيانات: MEDLINE
الوصف
تدمد:2397-334X
DOI:10.1038/s41559-023-02268-6