دورية أكاديمية

Ascorbic acid and its transporter SVCT2, affect radial glia cells differentiation in postnatal stages.

التفاصيل البيبلوغرافية
العنوان: Ascorbic acid and its transporter SVCT2, affect radial glia cells differentiation in postnatal stages.
المؤلفون: Saldivia N; Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile., Salazar K; Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile., Cifuentes M; Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, IBIMA, Málaga, Spain., Espinoza F; Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile., Harrison FE; Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA., Nualart F; Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.
المصدر: Glia [Glia] 2024 Apr; Vol. 72 (4), pp. 708-727. Date of Electronic Publication: 2024 Jan 05.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8806785 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-1136 (Electronic) Linking ISSN: 08941491 NLM ISO Abbreviation: Glia Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Wiley-Liss
Original Publication: New York : Alan R. Liss, Inc., c1988-
مواضيع طبية MeSH: Ascorbic Acid*/pharmacology , Sodium-Coupled Vitamin C Transporters*/genetics, Animals ; Humans ; Mice ; Ependymoglial Cells/metabolism ; Glycogen Synthase Kinase 3/metabolism ; Membrane Transport Proteins/metabolism ; Mice, Transgenic ; Neurons/metabolism
مستخلص: Radial glia (RG) cells generate neurons and glial cells that make up the cerebral cortex. Both in rodents and humans, these stem cells remain for a specific time after birth, named late radial glia (lRG). The knowledge of lRG and molecules that may be involved in their differentiation is based on very limited data. We analyzed whether ascorbic acid (AA) and its transporter SVCT2, are involved in lRG cells differentiation. We demonstrated that lRG cells are highly present between the first and fourth postnatal days. Anatomical characterization of lRG cells, revealed that lRG cells maintained their bipolar morphology and stem-like character. When lRG cells were labeled with adenovirus-eGFP at 1 postnatal day, we detected that some cells display an obvious migratory neuronal phenotype, suggesting that lRG cells continue generating neurons postnatally. Moreover, we demonstrated that SVCT2 was apically polarized in lRG cells. In vitro studies using the transgenic mice SVCT2 +/- and SVCT2 tg (SVCT2-overexpressing mouse), showed that decreased SVCT2 levels led to accelerated differentiation into astrocytes, whereas both AA treatment and elevated SVCT2 expression maintain the lRG cells in an undifferentiated state. In vivo overexpression of SVCT2 in lRG cells generated cells with a rounded morphology that were migratory and positive for proliferation and neuronal markers. We also examined mediators that can be involved in AA/SVCT2-modulated signaling pathways, determining that GSK3-β through AKT, mTORC2, and PDK1 is active in brains with high levels of SVCT2/AA. Our data provide new insights into the role of AA and SVCT2 in late RG cells.
(© 2024 The Authors. GLIA published by Wiley Periodicals LLC.)
References: Alessi, D. R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P., & Hemmings, B. A. (1996). Mechanism of activation of protein kinase B by insulin and IGF-1. The EMBO Journal, 15(23), 6541-6551.
Andrews, M. G., Subramanian, L., & Kriegstein, A. R. (2020). mTOR signaling regulates the morphology and migration of outer radial glia in developing human cortex. eLife, 9, 9.
Astuya, A., Caprile, T., Castro, M., Salazar, K., García, M. A., Reinicke, K., Rodríguez, F., Vera, J. C., Millán, C., Ulloa, V., Low, M., Martínez, F., & Nualart, F. (2005). Vitamin C uptake and recycling among normal and tumor cells from the central nervous system. Journal of Neuroscience Research, 79(1-2), 146-156.
Baeza, V., Cifuentes, M., Martínez, F., Ramírez, E., Nualart, F., Ferrada, L., Oviedo, M. J., de Lima, I., Troncoso, N., Saldivia, N., & Salazar, K. (2021). IIIG9 inhibition in adult ependymal cells changes adherens junctions structure and induces cellular detachment. Scientific Reports, 11(1), 18537.
Bodannes, R. S., & Chan, P. C. (1979). Ascorbic acid as a scavenger of singlet oxygen. FEBS Letters, 105(2), 195-196.
Caprile, T., Salazar, K., Astuya, A., Cisternas, P., Silva-Alvarez, C., Montecinos, H., Millán, C., García, M. A., & Nualart, F. (2009). The Na+−dependent L-ascorbic acid transporter SVCT2 expressed in brainstem cells, neurons, and neuroblastoma cells is inhibited by flavonoids. Journal of Neurochemistry, 108(3), 563-577.
Dixit, S., Bernardo, A., Walker, J. M., Kennard, J. A., Kim, G. Y., Kessler, E. S., & Harrison, F. E. (2015). Vitamin C deficiency in the brain impairs cognition, increases amyloid accumulation and deposition, and oxidative stress in APP/PSEN1 and normally aging mice. ACS Chemical Neuroscience, 6(4), 570-581.
Dixit, S., Fessel, J. P., & Harrison, F. E. (2017). Mitochondrial dysfunction in the APP/PSEN1 mouse model of Alzheimer's disease and a novel protective role for ascorbate. Free Radical Biology & Medicine, 112, 515-523.
Espinoza, F., Magdalena, R., Saldivia, N., Jara, N., Martínez, F., Ferrada, L., Salazar, K., Ávila, F., & Nualart, F. (2020). Vitamin C recycling regulates neurite growth in Neurospheres differentiated in vitro. Antioxidants (Basel), 9(12), 1276-1293.
Esteban, M. A., Wang, T., Qin, B., Yang, J., Qin, D., Cai, J., Li, W., Weng, Z., Chen, J., Ni, S., Chen, K., Li, Y., Liu, X., Xu, J., Zhang, S., Li, F., He, W., Labuda, K., Song, Y., … Pei, D. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 6(1), 71-79.
Ferrada, L., Barahona, M. J., Salazar, K., Vandenabeele, P., & Nualart, F. (2020). Vitamin C controls neuronal necroptosis under oxidative stress. Redox Biology, 29, 101408.
Ferrada, L., Magdalena, R., Barahona, M. J., Ramírez, E., Sanzana, C., Gutiérrez, J., & Nualart, F. (2021). Two distinct faces of vitamin C: AA vs. DHA. Antioxidants (Basel), 10(2), 215-231.
Frame, S., Cohen, P., & Biondi, R. M. (2001). A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Molecular Cell, 7(6), 1321-1327.
Fritch, H. A., MacEvoy, S. P., Thakral, P. P., Jeye, B. M., Ross, R. S., & Slotnick, S. D. (2020). The anterior hippocampus is associated with spatial memory encoding. Brain Research, 1732, 146696.
Fuentealba, L. C., Rompani, S. B., Parraguez, J. I., Obernier, K., Romero, R., Cepko, C. L., & Alvarez-Buylla, A. (2015). Embryonic origin of postnatal neural stem cells. Cell, 161(7), 1644-1655.
Furutachi, S., Miya, H., Watanabe, T., Kawai, H., Yamasaki, N., Harada, Y., Imayoshi, I., Nelson, M., Nakayama, K. I., Hirabayashi, Y., & Gotoh, Y. (2015). Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nature Neuroscience, 18(5), 657-665.
Gao, Y., Yang, L., Chen, L., Wang, X., Wu, H., Ai, Z., du, J., Liu, Y., Shi, X., Wu, Y., Guo, Z., & Zhang, Y. (2013). Vitamin C facilitates pluripotent stem cell maintenance by promoting pluripotency gene transcription. Biochimie, 95(11), 2107-2113.
García, M. A., Salazar, K., Millán, C., Rodríguez, F., Montecinos, H., Caprile, T., Silva, C., Cortes, C., Reinicke, R., Vera, J. C., Aguayo, L. G., Olate, J., Molina, B., & Nualart, F. (2005). Sodium vitamin C cotransporter SVCT2 is expressed in hypothalamic glial cells. Glia, 50(1), 32-47.
Glaser, T., & Brustle, O. (2005). Retinoic acid induction of ES-cell-derived neurons: The radial glia connection. Trends in Neurosciences, 28(8), 397-400.
Gleeson, J. G., Lin, P. T., Flanagan, L. A., & Walsh, C. A. (1999). Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron, 23(2), 257-271.
Han, Z., Zhang, Z., Guan, Y., Chen, B., Yu, M., Zhang, L., Fang, J., Gao, Y., & Guo, Z. (2021). New insights into vitamin C function: Vitamin C induces JAK2 activation through its receptor-like transporter SVCT2. International Journal of Biological Macromolecules, 173, 379-398.
Harrison, F. E., Best, J. L., Meredith, M. E., Gamlin, C. R., Borza, D. B., & May, J. M. (2012). Increased expression of SVCT2 in a new mouse model raises ascorbic acid in tissues and protects against paraquat-induced oxidative damage in lung. PLoS One, 7(4), e35623.
Harrison, F. E., & May, J. M. (2009). Vitamin C function in the brain: Vital role of the ascorbate transporter SVCT2. Free Radical Biology & Medicine, 46(6), 719-730.
He, X. B., Kim, M., Kim, S. Y., Yi, S. H., Rhee, Y. H., Kim, T., Lee, E. H., Park, C. H., Dixit, S., Harrison, F. E., & Lee, S. H. (2015). Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1- and JMJD3-dependent epigenetic control manner. Stem Cells, 33(4), 1320-1332.
Hevner, R. F. (2019). Intermediate progenitors and Tbr2 in cortical development. Journal of Anatomy, 235(3), 616-625.
Inta, D., Alfonso, J., von Engelhardt, J., Kreuzberg, M. M., Meyer, A. H., van Hooft, J. A., & Monyer, H. (2008). Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone. Proceedings of the National Academy of Sciences of the United States of America, 105(52), 20994-20999.
Jara, N., Cifuentes, M., Martínez, F., González-Chavarría, I., Salazar, K., Ferrada, L., & Nualart, F. (2022). Vitamin C deficiency reduces neurogenesis and proliferation in the SVZ and lateral ventricle extensions of the Young Guinea pig brain. Antioxidants (Basel), 11(10), 2030-2041.
Jones-Villeneuve, E. M., Rudnicki, M. A., Harris, J. F., & McBurney, M. (1983). Retinoic acid-induced neural differentiation of embryonal carcinoma cells. Molecular and Cellular Biology, 3(12), 2271-2279.
Kang, D., Wang, D., Xu, J., Quan, C., Guo, X., Wang, H., Luo, J., Yang, Z., Chen, S., & Chen, J. (2018). The InR/Akt/TORC1 growth-promoting signaling negatively regulates JAK/STAT activity and migratory cell fate during morphogenesis. Developmental Cell, 44(4), 524-531 e5.
Kim, W. Y., Wang, X., Wu, Y., Doble, B. W., Patel, S., Woodgett, J. R., & Snider, W. D. (2009). GSK-3 is a master regulator of neural progenitor homeostasis. Nature Neuroscience, 12(11), 1390-1397.
Kosodo, Y., & Huttner, W. B. (2009). Basal process and cell divisions of neural progenitors in the developing brain. Development, Growth & Differentiation, 51(3), 251-261.
Kriegstein, A., & Alvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem cells. Annual Review of Neuroscience, 32, 149-184.
Kyrousi, C., Lygerou, Z., & Taraviras, S. (2017). How a radial glial cell decides to become a multiciliated ependymal cell. Glia, 65(7), 1032-1042.
La Manno, G., Siletti, L., Furlan, A., Gyllborg, D., Vinsland, E., Mossi Albiach, A., Mattsson Langseth, Ch., Khven, I., Lederer, A. R., Dratva, L. M., Johnsson, A., Nilsson, M., Lönnerberg, P., & Linnarsson, S. (2021). Molecular architecture of the developing mouse brain. Nature, 596(7870), 92-96.
Le Magueresse, C., Alfonso, J., Khodosevich, K., Arroyo Martín, A. A., Bark, Ch. & Monyer, H. (2011). “small axonless neurons”: Postnatally generated neocortical interneurons with delayed functional maturation. The Journal of Neuroscience, 31(46), 16731-16747.
Lee, J. Y., Chang, M. Y., Park, C. H., Kim, H. Y., Kim, J. H., Son, H., Lee, Y. S., & Lee, S. H. (2003). Ascorbate-induced differentiation of embryonic cortical precursors into neurons and astrocytes. Journal of Neuroscience Research, 73(2), 156-165.
Lee, S. K., Kang, J. S., Jung, D. J., Hur, D. Y., Kim, J. E., Hahm, E., Bae, S., Kim, H. W., Kim, D., Cho, B. J., Cho, D., Shin, D. H., Hwang, Y. I., & Lee, W. J. (2008). Vitamin C suppresses proliferation of the human melanoma cell SK-MEL-2 through the inhibition of cyclooxygenase-2 (COX-2) expression and the modulation of insulin-like growth factor II (IGF-II) production. Journal of Cellular Physiology, 216(1), 180-188.
Li, Z., Theus, M. H., & Wei, L. (2006). Role of ERK 1/2 signaling in neuronal differentiation of cultured embryonic stem cells. Development, Growth & Differentiation, 48(8), 513-523.
Martinez, F., Cifuentes, M., Tapia, J. C., & Nualart, F. (2019). The median eminence as the hypothalamic area involved in rapid transfer of glucose to the brain: Functional and cellular mechanisms. Journal of Molecular Medicine (Berlin, Germany), 97(8), 1085-1097.
Meredith, M. E., Harrison, F. E., & May, J. M. (2011). Differential regulation of the ascorbic acid transporter SVCT2 during development and in response to ascorbic acid depletion. Biochemical and Biophysical Research Communications, 414(4), 737-742.
Meredith, M. E., & May, J. M. (2013). Regulation of embryonic neurotransmitter and tyrosine hydroxylase protein levels by ascorbic acid. Brain Research, 1539, 7-14.
Merkle, F. T., Tramontin, A. D., García-Verdugo, J. M., & Alvarez-Buylla, A. (2004). Radial glia give rise to adult neural stem cells in the subventricular zone. Proceedings of the National Academy of Sciences of the United States of America, 101(50), 17528-17532.
Mori, T., Buffo, A., & Gotz, M. (2005). The novel roles of glial cells revisited: The contribution of radial glia and astrocytes to neurogenesis. Current Topics in Developmental Biology, 69, 67-99.
Mun, G. H., Kim, M. J., Lee, J. H., Kim, H. J., Chung, Y. H., Chung, Y. B., Kang, J. S., Hwang, Y. I., Oh, S. H., Kim, J. G., Hwang, D. H., Shin, D. H., & Lee, W. J. (2006). Immunohistochemical study of the distribution of sodium-dependent vitamin C transporters in adult rat brain. Journal of Neuroscience Research, 83(5), 919-928.
Noctor, S. C., Flint, A. C., Weissman, T. A., Wong, W. S., Clinton, B. K., & Kriegstein, A. R. (2002). Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. The Journal of Neuroscience, 22(8), 3161-3173.
Nualart, F., Salazar, K., Oyarce, K., Cisternas, P., Jara, N., Silva-Álvarez, C., Pastor, P., Martínez, F., García, A., García-Robles, M. Á., & Tapia, J. C. (2012). Typical and atypical stem cells in the brain, vitamin C effect and neuropathology. Biological Research, 45(3), 243-256.
Nualart, F., Mack, L., García, A., Cisternas, P., Bongarzone, E. R., Heitzer, M., Jara, N., Martínez, F., Ferrada, L., Espinoza, F., Baeza, V., & Salazar, K. (2014). Vitamin C transporters, recycling and the bystander effect in the nervous system: SVCT2 versus gluts. Stem Cell Research & Therapy, 4(5), 209.
Ortiz-Alvarez, G., & Spassky, N. (2021). One progenitor to generate them all: New evidence for multi-fated neural progenitors. Current Opinion in Neurobiology, 66, 186-194.
Oyarce, K., Silva-Alvarez, C., Ferrada, L., Martínez, F., Salazar, K., & Nualart, F. (2018). SVCT2 is expressed by cerebellar precursor cells, which differentiate into neurons in response to ascorbic acid. Molecular Neurobiology, 55(2), 1136-1149.
Pan, G., & Thomson, J. A. (2007). Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Research, 17(1), 42-49.
Pastor, P., Cisternas, P., Salazar, K., Silva-Alvarez, C., Oyarce, K., Jara, N., Espinoza, F., Martínez, A. D., & Nualart, F. (2013). SVCT2 vitamin C transporter expression in progenitor cells of the postnatal neurogenic niche. Frontiers in Cellular Neuroscience, 7, 119.
Pebworth, M. P., Ross, J., Andrews, M., Bhaduri, A., & Kriegstein, A. R. (2021). Human intermediate progenitor diversity during cortical development. Proceedings of the National Academy of Sciences of the United States of America, 118(26), e2019415118.
Portugal, C. C., Socodato, R., Canedo, T., Silva, C. M., Martins, T., Coreixas, V. S. M., Loiola, E. C., Gess, B., Röhr, D., Santiago, A. R., Young, P., Minshall, R. D., Paes-de-Carvalho, R., Ambrósio, A. F., & Relvas, J. B. (2017). Caveolin-1-mediated internalization of the vitamin C transporter SVCT2 in microglia triggers an inflammatory phenotype. Science Signaling, 10(472), eaal2005.
Qian, X., Shen, Q., Goderie, S. K., He, W., Capela, A., Davis, A. A., & Temple, S. (2000). Timing of CNS cell generation: A programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron, 28(1), 69-80.
Qin, S., Wang, G., Chen, L., Geng, H., Zheng, Y., Xia, C., Wu, S., Yao, J., & Deng, L. (2023). Pharmacological vitamin C inhibits mTOR signaling and tumor growth by degrading Rictor and inducing HMOX1 expression. PLoS Genetics, 19(2), e1010629.
Qiu, S., Li, L., Weeber, E. J., & May, J. M. (2007). Ascorbate transport by primary cultured neurons and its role in neuronal function and protection against excitotoxicity. Journal of Neuroscience Research, 85(5), 1046-1056.
Redmond, S. A., Figueres-Oñate, M., Obernier, K., Nascimento, M. A., Parraguez, J. I., López-Mascaraque, L., Fuentealba, L. C., & Alvarez-Buylla, A. (2019). Development of ependymal and postnatal neural stem cells and their origin from a common embryonic progenitor. Cell Reports, 27(2), 429-441 e3.
Rice, M. E. (2000). Ascorbate regulation and its neuroprotective role in the brain. Trends in Neurosciences, 23(5), 209-216.
Salazar, K., Cerda, G., Martínez, F., Sarmiento, J. M., González, C., Rodríguez, F., García-Robles, M., Tapia, J. C., Cifuentes, M., & Nualart, F. (2014). SVCT2 transporter expression is post-natally induced in cortical neurons and its function is regulated by its short isoform. Journal of Neurochemistry, 130(5), 693-706.
Salazar, K., Espinoza, F., Cerda-Gallardo, G., Ferrada, L., Magdalena, R., Ramírez, E., Ulloa, V., Saldivia, N., Troncoso, N., Oviedo, M. J., Barahona, M. J., Martínez, F., & Nualart, F. (2021). SVCT2 overexpression and ascorbic acid uptake increase cortical neuron differentiation, which is dependent on vitamin C recycling between neurons and astrocytes. Antioxidants (Basel), 10(9), 1413-1428.
Salazar, K., Jara, N., Ramírez, E., de Lima, I., Smith-Ghigliotto, J., Muñoz, V., Ferrada, L., & Nualart, F. (2023). Role of vitamin C and SVCT2 in neurogenesis. Frontiers in Neuroscience, 17, 1155758.
Salazar, K., Martínez, F., Pérez-Martín, M., Cifuentes, M., Trigueros, L., Ferrada, L., Espinoza, F., Saldivia, N., Bertinat, R., Forman, K., Oviedo, M. J., López-Gambero, A. J., Bonansco, C., Bongarzone, E. R., & Nualart, F. (2017). SVCT2 expression and function in reactive astrocytes is a common event in different brain pathologies. Molecular Neurobiology, 55, 5439-5452.
Salazar, K., Martínez, M., Ulloa, V., Bertinat, R., Martínez, F., Jara, N., Espinoza, F., Bongarzone, E. R., & Nualart, F. (2016). SVCT2 overexpression in neuroblastoma cells induces cellular branching that is associated with ERK signaling. Molecular Neurobiology, 53(10), 6668-6679.
Sanai, N., Nguyen, T., Ihrie, R. A., Mirzadeh, Z., Tsai, H. H., Wong, M., Gupta, N., Berger, M. S., Huang, E., Garcia-Verdugo, J. M., Rowitch, D. H., & Alvarez-Buylla, A. (2011). Corridors of migrating neurons in the human brain and their decline during infancy. Nature, 478(7369), 382-386.
Sarbassov, D. D., Guertin, D. A., Ali, S. M., & Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307(5712), 1098-1101.
Saxton, R. A., & Sabatini, D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell, 169(2), 361-371.
Semprich, C. I., Davidson, L., Amorim Torres, A., Patel, H., Briscoe, J., Metzis, V., & Storey, K. G. (2022). ERK1/2 signalling dynamics promote neural differentiation by regulating chromatin accessibility and the polycomb repressive complex. PLoS Biology, 20(12), e3000221.
Shin, D. M., Ahn, J. I., Lee, K. H., Lee, Y. S., & Lee, Y. S. (2004). Ascorbic acid responsive genes during neuronal differentiation of embryonic stem cells. Neuroreport, 15(12), 1959-1963.
Siegenthaler, J. A., Ashique, A. M., Zarbalis, K., Patterson, K. P., Hecht, J. H., Kane, M. A., Folias, A. E., Choe, Y., May, S. R., Kume, T., Napoli, J. L., Peterson, A. S., & Pleasure, S. J. (2009). Retinoic acid from the meninges regulates cortical neuron generation. Cell, 139(3), 597-609.
Silva-Alvarez, C., Salazar, K., Cisternas, P., Martínez, F., Liour, S., Jara, N., Bertinat, R., & Nualart, F. (2016). Apical polarization of SVCT2 in apical radial glial cells and progenitors during brain development. Molecular Neurobiology, 54, 5449-5467.
Sinor, A. D., & Lillien, L. (2004). Akt-1 expression level regulates CNS precursors. The Journal of Neuroscience, 24(39), 8531-8541.
Sotiriou, S., Gispert, S., Cheng, J., Wang, Y., Chen, A., Hoogstraten-Miller, S., Miller, G. F., Kwon, O., Levine, M., Guttentag, S. H., & Nussbaum, R. L. (2002). Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival. Nature Medicine, 8(5), 514-517.
Spear, P. C., & Erickson, C. A. (2012). Interkinetic nuclear migration: A mysterious process in search of a function. Development, Growth & Differentiation, 54(3), 306-316.
Spector, R., & Lorenzo, A. V. (1974). Specificity of ascorbic acid transport system of the central nervous system. The American Journal of Physiology, 226(6), 1468-1473.
Stadtfeld, M., Apostolou, E., Ferrari, F., Choi, J., Walsh, R. M., Chen, T., Ooi, S. S. K., Kim, S. Y., Bestor, T. H., Shioda, T., Park, P. J., & Hochedlinger, K. (2012). Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells. Nature Genetics, 44(4), 398-405. S1-S2.
Su, X., Shen, Z., Yang, Q., Sui, F., Pu, J., Ma, J., Ma, S., Yao, D., Ji, M., & Hou, P. (2019). Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT pathways via distinct mechanisms. Theranostics, 9(15), 4461-4473.
Temple, S. (2001). The development of neural stem cells. Nature, 414(6859), 112-117.
Tong, C. K., Han, Y. G., Shah, J. K., Obernier, K., Guinto, C. D., & Alvarez-Buylla, A. (2014). Primary cilia are required in a unique subpopulation of neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 111(34), 12438-12443.
Tramontin, A. D., García-Verdugo, J. M., Lim, D. A., & Alvarez-Buylla, A. (2003). Postnatal development of radial glia and the ventricular zone (VZ): A continuum of the neural stem cell compartment. Cerebral Cortex, 13(6), 580-587.
Tsukaguchi, H., Tokui, T., Mackenzie, B., Berger, U. V., Chen, X. Z., Wang, Y., Brubaker, R. F., & Hediger, M. A. (1999). A family of mammalian Na+−dependent L-ascorbic acid transporters. Nature, 399(6731), 70-75.
Ulloa, V., García-Robles, M., Martínez, F., Salazar, K., Reinicke, K., Pérez, F., Godoy, D. F., Godoy, A. S., & Nualart, F. (2013). Human choroid plexus papilloma cells efficiently transport glucose and vitamin C. Journal of Neurochemistry, 127(3), 403-414.
Ulloa, V., Saldivia, N., Ferrada, L., Salazar, K., Martínez, F., Silva-Alvarez, C., Magdalena, R., Oviedo, M. J., Montecinos, H., Torres-Vergara, P., Cifuentes, M., & Nualart, F. (2019). Basal sodium-dependent vitamin C transporter 2 polarization in choroid plexus explant cells in normal or scorbutic conditions. Scientific Reports, 9(1), 14422.
Villalba, A., Gotz, M., & Borrell, V. (2021). The regulation of cortical neurogenesis. Current Topics in Developmental Biology, 142, 1-66.
Voigt, T. (1989). Development of glial cells in the cerebral wall of ferrets: Direct tracing of their transformation from radial glia into astrocytes. The Journal of Comparative Neurology, 289(1), 74-88.
Wang, B., Gao, Y., Xiao, Z., Chen, B., Han, J., Zhang, J., Wang, X., & Dai, J. (2009). Erk1/2 promotes proliferation and inhibits neuronal differentiation of neural stem cells. Neuroscience Letters, 461(3), 252-257.
Wang, S., Liang, Q., Qiao, H., Li, H., Shen, T., Ji, F., & Jiao, J. (2016). DISC1 regulates astrogenesis in the embryonic brain via modulation of RAS/MEK/ERK signaling through RASSF7. Development, 143(15), 2732-2740.
Wang, T., Chen, K., Zeng, X., Yang, J., Wu, Y., Shi, X., Qin, B., Zeng, L., Esteban, M. A., Pan, G., & Pei, D. (2011). The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell, 9(6), 575-587.
Wu, H., Wu, Y., Ai, Z., Yang, L., Gao, Y., du, J., Guo, Z., & Zhang, Y. (2014). Vitamin C enhances Nanog expression via activation of the JAK/STAT signaling pathway. Stem Cells, 32(1), 166-176.
Yan, J., Studer, L., & McKay, R. D. (2001). Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor expanded mesencephalic precursors. Journal of Neurochemistry, 76(1), 307-311.
Zhang, J., Shemezis, J. R., McQuinn, E. R., Wang, J., Sverdlov, M., & Chenn, A. (2013). AKT activation by N-cadherin regulates beta-catenin signaling and neuronal differentiation during cortical development. Neural Development, 8, 7.
Zhang, S., & Cui, W. (2014). Sox2, a key factor in the regulation of pluripotency and neural differentiation. World Journal of Stem Cells, 6(3), 305-311.
معلومات مُعتمدة: ECM12 Agencia Nacional de Investigación y Desarrollo (ANID) - Programa de Investigación Asociativa (PIA) Chile; 1190848 Fondo Nacional de Desarrollo Científico y Tecnológico; 1221147 Fondo Nacional de Desarrollo Científico y Tecnológico
فهرسة مساهمة: Keywords: SVCT2; ascorbic acid; cerebral cortex; late radial glia; neuronal differentiation; vitamin C
المشرفين على المادة: PQ6CK8PD0R (Ascorbic Acid)
EC 2.7.11.26 (Glycogen Synthase Kinase 3)
0 (Membrane Transport Proteins)
0 (Sodium-Coupled Vitamin C Transporters)
0 (Slc23a1 protein, mouse)
تواريخ الأحداث: Date Created: 20240105 Date Completed: 20240222 Latest Revision: 20240725
رمز التحديث: 20240726
DOI: 10.1002/glia.24498
PMID: 38180226
قاعدة البيانات: MEDLINE
الوصف
تدمد:1098-1136
DOI:10.1002/glia.24498