دورية أكاديمية

Low-dose X-ray radiation induces an adaptive response: A potential countermeasure to galactic cosmic radiation exposure.

التفاصيل البيبلوغرافية
العنوان: Low-dose X-ray radiation induces an adaptive response: A potential countermeasure to galactic cosmic radiation exposure.
المؤلفون: Edwards S; AresVallis LLC, Valhalla, New York, USA., Adams J; AresVallis LLC, Valhalla, New York, USA., Tchernikov A; AresVallis LLC, Valhalla, New York, USA., Edwards JG; AresVallis LLC, Valhalla, New York, USA.
المصدر: Experimental physiology [Exp Physiol] 2024 Jan 05. Date of Electronic Publication: 2024 Jan 05.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 9002940 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-445X (Electronic) Linking ISSN: 09580670 NLM ISO Abbreviation: Exp Physiol Subsets: MEDLINE
أسماء مطبوعة: Publication: Cambridge, Eng : Wiley-Blackwell
Original Publication: Cambridge ; New York, NY, USA : Published for the Physiological Society by Cambridge University Press, c1990-
مستخلص: Space exploration involves many dangers including galactic cosmic radiation (GCR). This class of radiation includes high-energy protons and heavy ionizing ions. NASA has defined GCR as a carcinogenic risk for long-duration space missions. To date, no clear strategy has been developed to counter chronic GCR exposure. We hypothesize that preconditioning cells with low levels of radiation will be protective from subsequent higher radiation exposures. H9C2 cells were pretreated with 0.1 to 1.0 Gy X-rays. The challenge radiation exposure consisted of either 8 Gy X-rays or 75 cGy of GCR, using a five-ion GCRsim protocol. A cell doubling time assay was used to determine cell viability. An 8 Gy X-ray challenge alone significantly (P < 0.05) increased cell doubling time compared to the no-radiation control group. Low-dose radiation pre-treatment ameliorated the 8 Gy X-ray-induced increases in cell doubling time. A 75 cGy GCR challenge alone significantly increased cell doubling time compared to the no-radiation group. Following the 75 cGy challenge, only the 0.5 and 1.0 Gy pre-treatment ameliorated the 75 cGy-induced increases in cell doubling time. DNA damage or pathological oxidant stress will delay replicative functions and increase cell doubling time. Our results suggested that pretreatment with low-dose X-rays induced an adaptive response which offered a small but significant protection against a following higher radiation challenge. Although perhaps not a practical countermeasure, these findings may serve to offer insight into cell signalling pathways activated in response to low-dose irradiation and targeted for countermeasure development.
(© 2024 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.)
References: Azzam, E. I., Jay-Gerin, J. P., & Pain, D. (2012). Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Letters, 327(1-2), 48-60.
Belli, M., & Indovina, L. (2020). The response of living organisms to low radiation environment and its implications in radiation protection. Frontiers in Public Health, 8, 601711.
Bose Girigoswami, K., & Ghosh, R. (2005). Response to gamma-irradiation in V79 cells conditioned by repeated treatment with low doses of hydrogen peroxide. Radiation and Environmental Biophysics, 44(2), 131-137.
Caratero, A., Courtade, M., Bonnet, L., Planel, H., & Caratero, C. (1998). Effect of a continuous gamma irradiation at a very low dose on the life span of mice. Gerontology, 44(5), 272-276.
Chen, Q. M., Tu, V. C., Wu, Y., & Bahl, J. J. (2000). Hydrogen peroxide dose dependent induction of cell death or hypertrophy in cardiomyocytes. Archives of Biochemistry and Biophysics, 373(1), 242-248.
Clutton, S. M., Townsend, K. M., Walker, C., Ansell, J. D., & Wright, E. G. (1996). Radiation-induced genomic instability and persisting oxidative stress in primary bone marrow cultures. Carcinogenesis, 17(8), 1633-1639.
Cucinotta, F. A. (2015). Review of NASA approach to space radiation risk assessments for Mars exploration. Health Physics, 108(2), 131-142.
Cucinotta, F. A., & Durante, M. (2006). Cancer risk from exposure to galactic cosmic rays: Implications for space exploration by human beings. The Lancet Oncology, 7(5), 431-435.
Cucinotta, F. A., Kim, M. H., Chappell, L. J., & Huff, J. L. (2013). How safe is safe enough? Radiation risk for a human mission to Mars. PLoS ONE, 8(10), E74988.
Cucinotta, F. A., Kim, M. H., Willingham, V., & George, K. A. (2008). Physical and biological organ dosimetry analysis for international space station astronauts. Radiation Research, 170(1), 127-138.
Demple, B., & Halbrook, J. (1983). Inducible repair of oxidative DNA damage in Escherichia coli. Nature, 304(5925), 466-468.
Desai, N., Davis, E., O'Neill, P., Durante, M., Cucinotta, F. A., & Wu, H. (2005). Immunofluorescence detection of clustered gamma-H2AX foci induced by HZE-particle radiation. Radiation Research, 164(4 Pt 2), 518-522.
Fan, L., Xu, S., Zhang, F., Cui, X., Fazli, L., Gleave, M., Clark, D. J., Yang, A., Hussain, A., Rassool, F., & Qi, J. (2020). Histone demethylase JMJD1A promotes expression of DNA repair factors and radio-resistance of prostate cancer cells. Cell Death & Disease, 11(4), 214.
Fratini, E., Carbone, C., Capece, D., Esposito, G., Simone, G., Tabocchini, M. A., Tomasi, M., Belli, M., & Satta, L. (2015). Low-radiation environment affects the development of protection mechanisms in V79 cells. Radiation and Environmental Biophysics, 54(2), 183-194.
Guzman, C., Bagga, M., Kaur, A., Westermarck, J., & Abankwa, D. (2014). ColonyArea: An ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS ONE, 9(3), E92444.
Hei, T. K., Zhou, H., Ivanov, V. N., Hong, M., Lieberman, H. B., Brenner, D. J., Amundson, S. A., & Geard, C. R. (2008). Mechanism of radiation-induced bystander effects: A unifying model. The Journal of Pharmacy and Pharmacology, 60(8), 943-950.
Hendrikse, A. S., Hunter, A. J., Keraan, M., & Blekkenhorst, G. H. (2000). Effects of low dose irradiation on TK6 and U937 cells: Induction of p53 and its role in cell-cycle delay and the adaptive response. International Journal of Radiation Biology, 76(1), 11-21.
Hicks, S., Labinskyy, N., Piteo, B., Laurent, D., Mathew, J. E., Gupte, S. A., & Edwards, J. G. (2013). Type II diabetes increases mitochondrial DNA mutations in the left ventricle of the Goto-Kakizaki diabetic rat. American Journal of Physiology-Heart and Circulatory Physiology, 304(7), H903-H915.
Hoffmann, M. J., & Schulz, W. A. (2005). Causes and consequences of DNA hypomethylation in human cancer. Biochemistry and Cell Biology, 83(3), 296-321.
Jackson, S. P., & Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature, 461(7267), 1071-1078.
Jain, M. R., Li, M., Chen, W., Liu, T., de Toledo, S. M., Pandey, B. N., Li, H., Rabin, B. M., & Azzam, E. I. (2011). In vivo space radiation-induced non-targeted responses: Late effects on molecular signaling in mitochondria. Current Molecular Pharmacology, 4(2), 106-114.
Jiang, H., Li, W., Li, X., Cai, L., & Wang, G. (2008). Low-dose radiation induces adaptive response in normal cells, but not in tumor cells: In vitro and in vivo studies. Journal of Radiation Research, 49(3), 219-230.
Kim, S. B., Pandita, R. K., Eskiocak, U., Ly, P., Kaisani, A., Kumar, R., Cornelius, C., Wright, W. E., Pandita, T. K., & Shay, J. W. (2012). Targeting of Nrf2 induces DNA damage signaling and protects colonic epithelial cells from ionizing radiation. Proceedings of the National Academy of Sciences, USA, 109(43), E2949-2955.
Klammer, H., Kadhim, M., & Iliakis, G. (2010). Evidence of an adaptive response targeting DNA nonhomologous end joining and its transmission to bystander cells. Cancer Research, 70(21), 8498-8506.
Koturbash, I., Boyko, A., Rodriguez-Juarez, R., McDonald, R. J., Tryndyak, V. P., Kovalchuk, I., Pogribny, I. P., & Kovalchuk, O. (2007). Role of epigenetic effectors in maintenance of the long-term persistent bystander effect in spleen in vivo. Carcinogenesis, 28(8), 1831-1838.
Koturbash, I., Jadavji, N. M., Kutanzi, K., Rodriguez-Juarez, R., Kogosov, D., Metz, G. A. S., & Kovalchuk, O. (2016). Fractionated low-dose exposure to ionizing radiation leads to DNA damage, epigenetic dysregulation, and behavioral impairment. Environmental Epigenetics, 2(4), Dvw025.
Kwon, S. H., Pimentel, D. R., Remondino, A., Sawyer, D. B., & Colucci, W. S. (2003). H(2)O(2) regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. Journal of Molecular and Cellular Cardiology, 35(6), 615-621.
Liu, Y., Zhang, L., Zhang, H., Liu, B., Wu, Z., Zhao, W., & Wang, Z. (2012). Exogenous melatonin modulates apoptosis in the mouse brain induced by high-LET carbon ion irradiation. Journal of Pineal Research, 52(1), 47-56.
Lyon, C. M., Klinge, D. M., Liechty, K. C., Gentry, F. D., March, T. H., Kang, T., Gilliland, F. D., Adamova, G., Rusinova, G., Telnov, V., & Belinsky, S. A. (2007). Radiation-induced lung adenocarcinoma is associated with increased frequency of genes inactivated by promoter hypermethylation. Radiation Research, 168(4), 409-414.
McLaughlin, M. F., Donoviel, D. B., & Jones, J. A. (2017). Novel indications for commonly used medications as radiation protectants in spaceflight. Aerospace Medicine and Human Performance, 88(7), 665-676.
Menendez, J. A., Cufi, S., Oliveras-Ferraros, C., Martin-Castillo, B., Joven, J., Vellon, L., & Vazquez-Martin, A. (2011). Metformin and the ATM DNA damage response (DDR): Accelerating the onset of stress-induced senescence to boost protection against cancer. Aging, 3(11), 1063-1077.
Miura, K., Olsen, C. M., Rea, S., Marsden, J., & Green, A. C. (2019). Do airline pilots and cabin crew have raised risks of melanoma and other skin cancers? Systematic review and meta-analysis. British Journal of Dermatology, 181(1), 55-64.
Mladenov, E., Li, F., Zhang, L., Klammer, H., & Iliakis, G. (2018). Intercellular communication of DNA damage and oxidative status underpin bystander effects. International Journal of Radiation Biology, 94(8), 719-726.
Moore, S., Stanley, F. K., & Goodarzi, A. A. (2014). The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation-no simple task. DNA Repair, 17, 64-73.
Olivieri, G., Bodycote, J., & Wolff, S. (1984). Adaptive response of human lymphocytes to low concentrations of radioactive thymidine. Science, 223(4636), 594-597.
Park, S. H., Lee, Y., Jeong, K., Yoo, S. Y., Cho, C. K., & Lee, Y. S. (1999). Different induction of adaptive response to ionizing radiation in normal and neoplastic cells. Cell Biology and Toxicology, 15(2), 111-119.
Rafehi, H., Orlowski, C., Georgiadis, G. T., Ververis, K., El-Osta, A., & Karagiannis, T. C. (2011). Clonogenic assay: Adherent cells. Journal of Visualized Experiments, 00(49), 2573.
Sanlorenzo, M., Wehner, M. R., Linos, E., Kornak, J., Kainz, W., Posch, C., Vujic, I., Johnston, K., Gho, D., Monico, G., McGrath, J. T., Osella-Abate, S., Quaglino, P., Cleaver, J. E., & Ortiz-Urda, S. (2015). The risk of melanoma in airline pilots and cabin crew: A meta-analysis. JAMA Dermatology, 151(1), 51-58.
Schwarz, E. R., Whyte, W. S., & Kloner, R. A. (1997). Ischemic preconditioning. Current Opinion in Cardiology, 12(5), 475-481.
Sekiguchi, M., & Matsushita, N. (2022). DNA damage response regulation by histone ubiquitination. International Journal of Molecular Sciences, 23(15), 8187.
Seong, J., Kim, S. H., Pyo, H. R., Chung, E. J., & Suh, C. O. (2001). Effect of low-dose irradiation on induction of an apoptotic adaptive response in the murine system. Radiation and Environmental Biophysics, 40(4), 335-339.
Sisakht, M., Darabian, M., Mahmoodzadeh, A., Bazi, A., Shafiee, S. M., Mokarram, P., & Khoshdel, Z. (2020). The role of radiation induced oxidative stress as a regulator of radio-adaptive responses. International Journal of Radiation Biology, 96(5), 561-576.
Stewart-Ornstein, J., Iwamoto, Y., Miller, M. A., Prytyskach, M. A., Ferretti, S., Holzer, P., Kallen, J., Furet, P., Jambhekar, A., Forrester, W. C., Weissleder, R., & Lahav, G. (2021). p53 dynamics vary between tissues and are linked with radiation sensitivity. Nature Communications, 12(1), 898.
Suman, S., Rodriguez, O. C., Winters, T. A., Fornace, A. J. Jr., Albanese, C., & Datta, K. (2013). Therapeutic and space radiation exposure of mouse brain causes impaired DNA repair response and premature senescence by chronic oxidant production. Aging, 5(8), 607-622.
Toyota, M., & Issa, J. P. (2000). The role of DNA hypermethylation in human neoplasia. Electrophoresis, 21(2), 329-333.
Tseng, B. P., Giedzinski, E., Izadi, A., Suarez, T., Lan, M. L., Tran, K. K., Acharya, M. M., Nelson, G. A., Raber, J., Parihar, V. K., & Limoli, C. L. (2014). Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation. Antioxidants & Redox Signaling, 20(9), 1410-1422.
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology, 39(1), 44-84.
Weiss, M., Nikisher, B., Haran, H., Tefft, K., Adams, J., & Edwards, J. G. (2022). High throughput screen of small molecules as potential countermeasures to galactic cosmic radiation induced cellular dysfunction. Life Sciences in Space Research, 35, 76-87.
Wolfs, E., Struys, T., Notelaers, T., Roberts, S. J., Sohni, A., Bormans, G., Van Laere, K., Luyten, F. P., Gheysens, O., Lambrichts, I., Verfaillie, C. M., & Deroose, C. M. (2013). 18F-FDG labeling of mesenchymal stem cells and multipotent adult progenitor cells for PET imaging: effects on ultrastructure and differentiation capacity. Journal of Nuclear Medicine, 54(3), 447-454.
Xing, X., Zhang, C., Shao, M., Tong, Q., Zhang, G., Li, C., Cheng, J., Jin, S., Ma, J., Wang, G., Li, X., & Cai, L. (2012). Low-dose radiation activates Akt and Nrf2 in the kidney of diabetic mice: A potential mechanism to prevent diabetic nephropathy. Oxidative Medicine and Cellular Longevity, 2012, 291087.
Zhao, H., Kalivendi, S., Zhang, H., Joseph, J., Nithipatikom, K., Vasquez-Vivar, J., & Kalyanaraman, B. (2003). Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: Potential implications in intracellular fluorescence detection of superoxide. Free Radical Biology & Medicine, 34(11), 1359-1368.
Zhao, Y., Zhong, R., Sun, L., Jia, J., Ma, S., & Liu, X. (2015). Ionizing radiation-induced adaptive response in fibroblasts under both monolayer and 3-dimensional conditions. PLoS ONE, 10(3), E0121289.
معلومات مُعتمدة: 80NSSC19K0436 United States NASA NASA
فهرسة مساهمة: Keywords: DNA damage; cardiomyopathy; galactic cosmic radiation; space flight countermeasures
تواريخ الأحداث: Date Created: 20240105 Latest Revision: 20240105
رمز التحديث: 20240105
DOI: 10.1113/EP091350
PMID: 38180298
قاعدة البيانات: MEDLINE
الوصف
تدمد:1469-445X
DOI:10.1113/EP091350