دورية أكاديمية

Two-photon excitation fluorescence microspectroscopy protocols for examining fluorophores in fossil plants.

التفاصيل البيبلوغرافية
العنوان: Two-photon excitation fluorescence microspectroscopy protocols for examining fluorophores in fossil plants.
المؤلفون: Stoneman MR; Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA., McCoy VE; Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA. mccoyv@uwm.edu.; School of Geography, Geology, and the Environment, University of Leicester, Leicester, LE1 7RH, UK. mccoyv@uwm.edu., Gee CT; Institute of Geosciences, Division of Paleontology, University of Bonn, Nussallee 8, 53115, Bonn, Germany., Bober KMM; Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA., Raicu V; Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA. vraicu@uwm.edu.
المصدر: Communications biology [Commun Biol] 2024 Jan 06; Vol. 7 (1), pp. 53. Date of Electronic Publication: 2024 Jan 06.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group UK Country of Publication: England NLM ID: 101719179 Publication Model: Electronic Cited Medium: Internet ISSN: 2399-3642 (Electronic) Linking ISSN: 23993642 NLM ISO Abbreviation: Commun Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London, United Kingdom : Nature Publishing Group UK, [2018]-
مواضيع طبية MeSH: Ecosystem* , Fossils*, Microscopy, Fluorescence ; Amber ; Cellulose ; Fluorescent Dyes ; Ionophores
مستخلص: Fluorescence emission is common in plants. While fluorescence microscopy has been widely used to study living plants, its application in quantifying the fluorescence of fossil plants has been limited. Fossil plant fluorescence, from original fluorophores or formed during fossilization, can offer valuable insights into fluorescence in ancient plants and fossilization processes. In this work, we utilize two-photon fluorescence microspectroscopy to spatially and spectrally resolve the fluorescence emitted by amber-embedded plants, leaf compressions, and silicified wood. The advanced micro-spectroscope utilized, with its pixel-level spectral resolution and line-scan excitation capabilities, allows us to collect comprehensive excitation and emission spectra with high sensitivity and minimal laser damage to the specimens. By applying linear spectral unmixing to the spectrally resolved fluorescence images, we can differentiate between (a) the matrix and (b) the materials that comprise the fossil. Our analysis suggests that the latter correspond to durable tissues such as lignin and cellulose. Additionally, we observe potential signals from chlorophyll derivatives/tannins, although minerals may have contributed to this. This research opens doors to exploring ancient ecosystems and understanding the ecological roles of fluorescence in plants throughout time. Furthermore, the protocols developed herein can also be applied to analyze non-plant fossils and biological specimens.
(© 2024. The Author(s).)
References: García-Plazaola, J. I. et al. Autofluorescence: Biological functions and technical applications. Plant Sci. 236, 136–145 (2015). (PMID: 2602552710.1016/j.plantsci.2015.03.010)
Lagorio, M. G., Cordon, G. B. & Iriel, A. Reviewing the relevance of fluorescence in biological systems. Photochem. Photobiol. Sci. 14, 1538–1559 (2015). (PMID: 2610356310.1039/c5pp00122f)
Donaldson, L. Autofluorescence in plants. Molecules 25, 2393 (2020). (PMID: 32455605728801610.3390/molecules25102393)
Caro, T. & Allen, W. L. Interspecific visual signalling in animals and plants: a functional classification. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160344 (2017). (PMID: 28533461544406510.1098/rstb.2016.0344)
van der Kooi, C. J., Dyer, A. G., Kevan, P. G. & Lunau, K. Functional significance of the optical properties of flowers for visual signalling. Ann. Bot. 123, 263–276 (2019). (PMID: 2998232510.1093/aob/mcy119)
Iriel, A. & Lagorio, M. G. Is the flower fluorescence relevant in biocommunication? Naturwissenschaften 97, 915–924 (2010). (PMID: 2081187110.1007/s00114-010-0709-4)
Guerrero-Rubio, M. A., Escribano, J., García-Carmona, F. & Gandía-Herrero, F. Light Emission in Betalains: From Fluorescent Flowers to Biotechnological Applications. Trends Plant Sci. 25, 159–175 (2020). (PMID: 3184337110.1016/j.tplants.2019.11.001)
Briggs, D. E. G. & Summons, R. E. Ancient biomolecules: their origins, fossilization, and role in revealing the history of life. Bioessays 36, 482–490 (2014). (PMID: 2462309810.1002/bies.201400010)
Wolkenstein, K. & Arp, G. Taxon- and senescence-specific fluorescence of colored leaves from the Pliocene Willershausen Lagerstätte, Germany. PalZ, 747–756 (2021).
Labandeira, C. C. Reading and writing of the fossil record: Preservational pathways to exceptional fossilization. Paleontol. Soc. Pap. 20, 163–216 (2014). Amber. (PMID: 10.1017/S1089332600002850)
Bellani, V., Giulotto, E., Linati, L. & Sacchi, D. Origin of the blue fluorescence in Dominican amber. J. Appl. Phys. 97, 016101 (2005). (PMID: 10.1063/1.1829395)
Taniguchi, M. & Lindsey, J. S. Absorption and fluorescence spectral database of chlorophylls and analogues. Photochem. Photobiol. 97, 136–165 (2021). (PMID: 3275730510.1111/php.13319)
Roshchina, V. V. Autofluorescence of plant secreting cells as a biosensor and bioindicator reaction. J. Fluoresc. 13, 403–420 (2003). (PMID: 10.1023/A:1026164922760)
Bunkin, A. F. et al. Fossil plant remains diagnostics by laser-induced fluorescence and Raman spectroscopies. Photonics 10, 15 (2022). (PMID: 10.3390/photonics10010015)
Biener, G. et al. Development and experimental testing of an optical micro-spectroscopic technique incorporating true line-scan excitation. Int. J. Mol. Sci. 15, 261–276 (2014). (PMID: 10.3390/ijms15010261)
Raicu, V. et al. Determination of supramolecular structure and spatial distribution of protein complexes in living cells. Nat. Photon 3, 107–113 (2009). (PMID: 10.1038/nphoton.2008.291)
Locatelli, E. R. The exceptional preservation of plant fossils: a review of taphonomic pathways and biases in the fossil record. Paleontol. Soc. Pap. 20, 237–258 (2014). (PMID: 10.1017/S1089332600002874)
Wiemann, J., Crawford, J. M. & Briggs, D. E. G. Phylogenetic and physiological signals in metazoan fossil biomolecules. Sci. Adv. 6, eaba6883 (2020). (PMID: 32832604743931510.1126/sciadv.aba6883)
Wang, H., Leng, Q., Liu, W. & Yang, H. A rapid lake-shallowing event terminated preservation of the Miocene Clarkia Fossil Konservat-Lagerstätte (Idaho, USA). Geology 45, 239–242 (2017). (PMID: 10.1130/G38434.1)
Gee, C. T. & McCoy, V. E. in Fossilization: Understanding the Material Nature of Ancient Plants and Animals (eds Carole T. Gee, Victoria E. McCoy, & P. Martin Sander) 221–248 (Johns Hopkins University Press, 2021).
Rember, W. C. Stratigraphy and Paleobotany of Miocene Lake Sediments near Clarkia, Idaho. (University of Idaho, 1991).
Niklas, K. J. & Brown, R. M. Jr Ultrastructural and paleobiochemical correlations among fossil leaf tissues from the St. Maries River (Clarkia) area, northern Idaho, USA. Am. J. Bot. 68, 332–341 (1981). (PMID: 10.1002/j.1537-2197.1981.tb06370.x)
Huegele, I. B., Spielbauer, R. J. & Manchester, S. R. Morphology and systematic affinities of Platanus dissecta Lesquereux (Platanaceae) from the Miocene of Western North America. Int. J. Plant Sci. 181, 324–341 (2020). (PMID: 10.1086/706453)
Stoneman, M. R. & Raicu, V. Fluorescence-Based Detection of Proteins and Their Interactions in Live Cells. J. Phys. Chem. B 127, 4708–4721 (2023). (PMID: 3720584410.1021/acs.jpcb.3c01419)
Patowary, S. et al. Experimental verification of the kinetic theory of FRET using optical microspectroscopy and obligate oligomers. Biophys. J. 108, 1613–1622 (2015). (PMID: 25863053439083610.1016/j.bpj.2015.02.021)
Stoneman, M. R. et al. Quaternary structure of the yeast pheromone receptor Ste2 in living cells. Biochim. Et. Biophys. Acta-Biomembr. 1859, 1456–1464 (2017). (PMID: 10.1016/j.bbamem.2016.12.008)
Lednev, V. N. et al. Remote laser induced fluorescence of soils and rocks. Photonics 8, 411 (2021). (PMID: 10.3390/photonics8100411)
Modreski, P. J. & Aumente-Modreski, R. Fluorescent minerals, a review. Rocks Miner. Mag. 71, 14–22 (1996). (PMID: 10.1080/00357529.1996.11761532)
Robbins, M. in The Collector’s Book of Fluorescent Minerals (ed Manuel Robbins) 183–191 (Springer US, 1983).
Otto, A., Simoneit, B. R. T. & Rember, W. C. Conifer and angiosperm biomarkers in clay sediments and fossil plants from the Miocene Clarkia Formation, Idaho, USA. Org. Geochem. 36, 907–922 (2005). (PMID: 10.1016/j.orggeochem.2004.12.004)
Zimmermann, T. et al. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett. 531, 245–249 (2002). (PMID: 1241732010.1016/S0014-5793(02)03508-1)
Raicu, V., Jansma, D. B., Miller, R. J. & Friesen, J. D. Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer. Biochem. J. 385, 265–277 (2005). (PMID: 1535287510.1042/BJ20040226)
Talamond, P., Verdeil, J. L. & Conéjéro, G. Secondary metabolite localization by autofluorescence in living plant cells. Molecules 20, 5024–5037 (2015). (PMID: 25808147627247910.3390/molecules20035024)
Collinson, M. E. in Taphonomy: Process and Bias Through Time (eds Peter A. Allison & David J. Bottjer) 223–247 (Springer Netherlands, 2011).
Provencher, D. lsqnonnegvect.m ( https://www.mathworks.com/matlabcentral/fileexchange/47476-lsqnonnegvect-m ). MATLAB Central File Exchange (2023).
Sadowski, E.-M., Schmidt, A. R., Seyfullah, L. J. & Kunzmann, L. Conifers of the “Baltic Amber Forest” and their palaeoecological significance. Stapfia 180, 1–73 (2017).
Lambert, J. B., Santiago-Blay, J. A., Wu, Y. & Levy, A. J. Examination of amber and related materials by NMR spectroscopy. Magn. Reson. Chem. 53, 2–8 (2015). (PMID: 2517640210.1002/mrc.4121)
Lambert, J. B. et al. Distinguishing amber and copal classes by proton magnetic resonance spectroscopy. Archaeometry 54, 332–348 (2012). (PMID: 10.1111/j.1475-4754.2011.00625.x)
Seyfullah, L. J., Sadowski, E.-M. & Schmidt, A. R. Species-level determination of closely related araucarian resins using FTIR spectroscopy and its implications for the provenance of New Zealand amber. PeerJ 3, e1067 (2015). (PMID: 26157631449364610.7717/peerj.1067)
McCoy, V. E., Boom, A., Solórzano Kraemer, M. M. & Gabbott, S. E. The chemistry of American and African amber, copal, and resin from the genus Hymenaea. Org. Geochem. 113, 43–54 (2017). (PMID: 10.1016/j.orggeochem.2017.08.005)
Barthel, H. J. & McCoy, V. E. in Fossilization: Understanding the Material Nature of Ancient Plants and Animals (eds Carole T. Gee, Victoria E. McCoy, & P. Martin Sander) 115–138 (Johns Hopkins University Press, 2021).
McCoy, V. E. et al. Unlocking preservation bias in the amber insect fossil record through experimental decay. PLoS One 13, e0195482 (2018). (PMID: 29621345588656110.1371/journal.pone.0195482)
McCoy, V. E., Soriano, C. & Gabbott, S. E. A review of preservational variation of fossil inclusions in amber of different chemical groups. Earth Environ. Sci. Trans. R. Soc. Edinb. 107, 1–9 (2018).
Koller, B., Schmitt, J. M. & Tischendorf, G. Cellular fine structures and histochemical reactions in the tissue of a cypress twig preserved in Baltic amber. Proc. Biol. Sci. 272, 121–126 (2005). (PMID: 156952011634957)
Islas, C. A. et al. Structural characterisation of Baltic amber and its solvent extracts by several mass spectrometric methods. Rapid Commun. mass Spectrom. : RCM 15, 845–856 (2001). (PMID: 1138293110.1002/rcm.306)
Al-Tamimi, W., Al-Saadi, S. & Burghal, A. Antibacterial activity and GC-MS analysis of baltic amber against pathogenic bacteria. 611–618 (2020).
Liesegang, M., Tomaschek, F. & Götze, J. in Fossilization: Understanding the Material Nature of Ancient Plants and Animals (eds Carole T. Gee, Victoria E. McCoy, & P. Martin Sander) 159–186 (Johns Hopkins University Press, 2021).
Gee, C. T. & Liesegang, M. in Fossilization: Understanding the Material Nature of Ancient Plants and Animals (eds Carole T. Gee, Victoria E. McCoy, & P. Martin Sander) 139–158 (Johns Hopkins University Press, 2021).
Ballhaus, C. et al. The silicification of trees in volcanic ash - An experimental study. Geochim. Cosmochim. Acta 84, 62–74 (2012). (PMID: 10.1016/j.gca.2012.01.018)
Ricci, G. et al. Unusual luminescence of quartz from La Sassa, Tuscany: insights on the crystal and defect nanostructure of quartz. Miner.-Basel 11, 828 (2021).
Fisher, A. J., Hayes, W. & Stoneham, A. M. Theory of the Structure of the Self-Trapped Exciton in Quartz. J. Phys. Condens. Mat. 2, 6707–6720 (1990). (PMID: 10.1088/0953-8984/2/32/001)
Song, J. Y., Jonsson, H. & Corrales, L. R. Self-trapped excitons in quartz. Nucl. Instrum. Meth B 166, 451–458 (2000). (PMID: 10.1016/S0168-583X(99)00785-5)
Kuczumow, A., Nowak, J., Kuziola, R. & Jarzebski, M. Analysis of the composition and minerals diagrams determination of petrified wood. Microchem. J. 148, 120–129 (2019). (PMID: 10.1016/j.microc.2019.04.070)
Kitin, P. et al. Direct fluorescence imaging of lignocellulosic and suberized cell walls in roots and stems. Aob Plants 12, plaa032 (2020). (PMID: 32793329741507510.1093/aobpla/plaa032)
Gauderon, R., Lukins, P. B. & Sheppard, C. J. Three-dimensional second-harmonic generation imaging with femtosecond laser pulses. Opt. Lett. 23, 1209–1211 (1998). (PMID: 1808747610.1364/OL.23.001209)
Borile, G. et al. Label-free multiphoton microscopy: much more than fancy images. Int. J. Mol. Sci. 22, 2657 (2021). (PMID: 33800802796178310.3390/ijms22052657)
Reshak, A. H. Second harmonic generation from thick leaves using the two-photon laser scanning microscope. Micron 40, 455–462 (2009). (PMID: 1918807510.1016/j.micron.2008.12.008)
Tai, H. C., Chen, P. L., Xu, J. W. & Chen, S. Y. Two-photon fluorescence and second harmonic generation hyperspectral imaging of old and modern spruce woods. Opt. Express 28, 38831–38841 (2020). (PMID: 3337944310.1364/OE.410856)
Reynaud, C. et al. In-place molecular preservation of cellulose in 5,000-year-old archaeological textiles. Proc. Natl Acad. Sci. USA 117, 19670–19676 (2020). (PMID: 32747556744397210.1073/pnas.2004139117)
Gee, C. T., McCoy, V. E. & Sander, P. M. Fossilization: Understanding the Material Nature of Ancient Plants and Animals. (Johns Hopkins University Press, 2021).
Sander, P. M. & Gee, C. T. in Fossilization: Understanding the Material Nature of Ancient Plants and Animals (eds Carole T. Gee, Victoria E. McCoy, & P. Martin Sander) 1–15 (Johns Hopkins University Press, 2021).
McCoy, V. E. in Fossilization: Understanding the Material Nature of Ancient Plants and Animals (eds Carole T. Gee, Victoria E. McCoy, & P. Martin Sander) 249–255 (Johns Hopkins University Press, 2021).
Xiong, Y. S. et al. A review on recent advances in amino acid and peptide-based fluorescence and its potential applications. N. J. Chem. 45, 15180–15194 (2021). (PMID: 10.1039/D1NJ02230J)
McCoy, V. E. et al. Ancient amino acids from fossil feathers in amber. Sci. Rep. 9, 6420 (2019). (PMID: 31015542647871410.1038/s41598-019-42938-9)
Gaines, R. R. Burgess Shale-type preservation and its distribution in space and time. Paleontol. Soc. Pap. 20, 123–146 (2014). (PMID: 10.1017/S1089332600002837)
Butts, S. in Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization (eds Marc Laflamme, James D. Schiffbauer, & A. F. Darroch Dimon) 15–34 (Paleontological Society, 2014).
Wolkenstein, K. Fluorescent colour patterns in the basal pectinid Pleuronectites from the Middle Triassic of Central Europe: origin, fate and taxonomic implications of fluorescence. Palaeontology 65 (2022).
Wolkenstein, K., Schmidt, B. C. & Harzhauser, M. Polyene-based colouration preserved in 12 million-year-old gastropod shells. bioRxiv, 2023.2005.2017.541181 (2023).
So, P. T. C., Dong, C. Y., Masters, B. R. & Berland, K. M. Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng. 2, 399–429 (2000). (PMID: 1170151810.1146/annurev.bioeng.2.1.399)
Smiley, C. J. & Rember, W. C. in Late Cenozoic History of the Pacific Northwest Hardcover (ed C. J. Smiley) 11–31 (San Francisco, Calif.: Pacific Division of the American Association for the Advancement of Science, 1985).
Stoneman, M. R. et al. Two-photon excitation fluorescence microspectroscopy protocols for examining fluorophores in fossil plants [Data set]. figshare https://doi.org/10.6084/m9.figshare.24802719 (2023).
معلومات مُعتمدة: 1919670 National Science Foundation (NSF); 348043586 Deutsche Forschungsgemeinschaft (German Research Foundation)
المشرفين على المادة: 0 (Amber)
9004-34-6 (Cellulose)
0 (Fluorescent Dyes)
0 (Ionophores)
تواريخ الأحداث: Date Created: 20240106 Date Completed: 20240108 Latest Revision: 20240202
رمز التحديث: 20240202
مُعرف محوري في PubMed: PMC10771488
DOI: 10.1038/s42003-024-05763-z
PMID: 38184735
قاعدة البيانات: MEDLINE
الوصف
تدمد:2399-3642
DOI:10.1038/s42003-024-05763-z