دورية أكاديمية

The development of an electrochemical immunosensor utilizing chicken IgY anti-spike antibody for the detection of SARS-CoV-2.

التفاصيل البيبلوغرافية
العنوان: The development of an electrochemical immunosensor utilizing chicken IgY anti-spike antibody for the detection of SARS-CoV-2.
المؤلفون: Al-Qaoud KM; Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan., Obeidat YM; Department of Electronics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan. yusra.obeidat@yu.edu.jo., Al-Omari T; Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan., Okour M; Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan., Al-Omari MM; Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan., Ahmad MI; Rawgene Biotech, Umm Khelad St. 33, Amman, Jordan.; Atlas Medical, Sahab Industrial Area, Amman, Jordan.; Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal., Alshadfan R; Rawgene Biotech, Umm Khelad St. 33, Amman, Jordan.; Atlas Medical, Sahab Industrial Area, Amman, Jordan., Rawashdeh AM; Department of Chemistry, Faculty of Science, Yarmouk University, Irbid, Jordan.
المصدر: Scientific reports [Sci Rep] 2024 Jan 07; Vol. 14 (1), pp. 748. Date of Electronic Publication: 2024 Jan 07.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Biosensing Techniques* , COVID-19*/diagnosis , Blood Group Antigens*, Animals ; Chickens ; Immunoassay ; RNA, Viral ; SARS-CoV-2 ; Antibodies
مستخلص: This paper introduces a novel approach for detecting the SARS-CoV-2 recombinant spike protein combining a label free electrochemical impedimetric immunosensor with the use of purified chicken IgY antibodies. The sensor employs three electrodes and is functionalized with an anti-S IgY antibody, ELISA and immunoblot assays confirmed the positive response of chicken immunized with SARS-CoV2 S antigen. The developed immunosensor is effective in detecting SARS-CoV-2 in nasopharyngeal clinical samples from suspected cases. The key advantage of this biosensor is its remarkable sensitivity, and its capability of detecting very low concentrations of the target analyte, with a detection limit of 5.65 pg/mL. This attribute makes it highly suitable for practical point-of-care (POC) applications, particularly in low analyte count clinical scenarios, without requiring amplification. Furthermore, the biosensor has a wide dynamic range of detection, spanning from 11.56 to 740 ng/mL, which makes it applicable for sample analysis in a typical clinical setting.
(© 2024. The Author(s).)
References: Stills, H. F. Polyclonal antibody production. In The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents 259–274 (Elsevier, 2012). (PMID: 10.1016/B978-0-12-380920-9.00011-0)
Ma, C. et al. The critical experimental aspects for developing pathogen electrochemical biosensors: A lesson during the COVID-19 pandemic. Talanta 253, 124009 (2022). (PMID: 10.1016/j.talanta.2022.1240099562616)
Patolsky, F., Katz, E., Bardea, A. & Willner, I. Enzyme-linked amplified electrochemical sensing of oligonucleotide–DNA interactions by means of the precipitation of an insoluble product and using impedance spectroscopy. Langmuir 15(11), 3703–3706 (1999). (PMID: 10.1021/la981682v)
Twardowski, M. & Nuzzo, R. G. Molecular recognition at model organic interfaces: Electrochemical discrimination using self-assembled monolayers (SAMs) modified via the fusion of phospholipid vesicles. Langmuir 19(23), 9781–9791 (2003). (PMID: 10.1021/la0349018)
Mehrvar, M. & Abdi, M. Recent developments, characteristics, and potential applications of electrochemical biosensors. Anal. Sci. 20(8), 1113–1126 (2004). (PMID: 10.2116/analsci.20.111315352497)
Strong, M. E., Richards, J. R., Torres, M., Beck, C. M. & La Belle, J. T. Faradaic electrochemical impedance spectroscopy for enhanced analyte detection in diagnostics. Biosens. Bioelectron. 177, 112949 (2021). (PMID: 10.1016/j.bios.2020.11294933429205)
Soares, J. C. et al. Diagnostics of SARS-CoV-2 infection using electrical impedance spectroscopy with an immunosensor to detect the spike protein. Talanta 239, 123076 (2022). (PMID: 10.1016/j.talanta.2021.12307634876273)
Soares, J. C. et al. Detection of Staphylococcus aureus in milk samples using impedance spectroscopy and data processing with information visualization techniques and multidimensional calibration space. Sens. Actuators Rep. 4, 100083 (2022). (PMID: 10.1016/j.snr.2022.100083)
Ozer, T., Geiss, B. J. & Henry, C. S. Chemical and biological sensors for viral detection. J. Electrochem. Soc. 167(3), 037523 (2019). (PMID: 10.1149/2.0232003JES322873577106559)
Kaushik, A. K. et al. Electrochemical SARS-CoV-2 sensing at point-of-care and artificial intelligence for intelligent COVID-19 management. ACS Appl. Bio Mater. 3(11), 7306–7325 (2020). (PMID: 10.1021/acsabm.0c0100435019473)
K’Owino, I. O. & Sadik, O. A. Impedance spectroscopy: A powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis 17(23), 2101–2113 (2005). (PMID: 10.1002/elan.200503371)
Mattioli, I. A., Hassan, A., Oliveira, O. N. Jr. & Crespilho, F. N. On the challenges for the diagnosis of SARS-CoV-2 based on a review of current methodologies. ACS Sens. 5(12), 3655–3677 (2020). (PMID: 10.1021/acssensors.0c0138233267587)
Alatraktchi, F. A. A., Svendsen, W. E. & Molin, S. Electrochemical detection of pyocyanin as a biomarker for Pseudomonas aeruginosa: A focused review. Sensors 20(18), 5218 (2020). (PMID: 10.3390/s20185218329331257570525)
Manring, N., Ahmed, M. M., Tenhoff, N., Smeltz, J. L. & Pathirathna, P. Recent advances in electrochemical tools for virus detection. Anal. Chem. 94(20), 7149–7157 (2022). (PMID: 10.1021/acs.analchem.1c0535835535749)
Ozdalgic, B., Gul, M., Uygun, Z. O., Atçeken, N. & Tasoglu, S. Emerging applications of electrochemical impedance spectroscopy in tear film analysis. Biosensors 12(10), 827 (2022). (PMID: 10.3390/bios12100827362909649599721)
Hadj Hassine, I. Covid-19 vaccines and variants of concern: A review. Rev. Med. Virol. 32(4), e2313 (2022). (PMID: 10.1002/rmv.231334755408)
Lim, R. R. X. & Bonanni, A. The potential of electrochemistry for the detection of coronavirus-induced infections. TrAC Trends Anal. Chem. 133, 116081 (2020). (PMID: 10.1016/j.trac.2020.116081)
Mavrikou, S., Moschopoulou, G., Tsekouras, V. & Kintzios, S. Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 S1 spike protein antigen. Sensors 20(11), 3121 (2020). (PMID: 10.3390/s20113121324864777309076)
Ahmadivand, A., Gerislioglu, B., Ramezani, Z., Kaushik, A., Manickam, P. & Ghoreishi, S. A. Femtomolar-level detection of SARS-CoV-2 spike proteins using toroidal plasmonic metasensors. arXiv:2006.08536 (2020).
Eftekhari, A. et al. A comprehensive review of detection methods for SARS-CoV-2. Microorganisms 9(2), 232 (2021). (PMID: 10.3390/microorganisms9020232334993797911200)
Falzone, L., Gattuso, G., Tsatsakis, A., Spandidos, D. A. & Libra, M. Current and innovative methods for the diagnosis of COVID-19 infection. Int. J. Mol. Med. 47(6), 1–23 (2021). (PMID: 10.3892/ijmm.2021.4933)
Zhang, J. et al. Real-time, selective, and low-cost detection of trace level SARS-CoV-2 spike-protein for cold-chain food quarantine. npj Sci. Food 5(1), 12 (2021). (PMID: 10.1038/s41538-021-00094-3340750528357935)
Mojsoska, B. et al. Rapid SARS-CoV-2 detection using electrochemical immunosensor. Sensors 21(2), 390 (2021). (PMID: 10.3390/s21020390334299157827295)
Eissa, S. & Zourob, M. Development of a low-cost cotton-tipped electrochemical immunosensor for the detection of SARS-CoV-2. Anal. Chem. 93(3), 1826–1833 (2020). (PMID: 10.1021/acs.analchem.0c0471933370087)
Mahari, S., Roberts, A., Shahdeo, D. & Gandhi, S. eCovSens-ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of nCovid-19. BioRxiv 2020, 059204 (2020).
Seo, G. et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 14(4), 5135–5142 (2020). (PMID: 10.1021/acsnano.0c0282332293168)
Ahmed, S. F., Quadeer, A. A. & McKay, M. R. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 12(3), 254 (2020). (PMID: 10.3390/v12030254321065677150947)
Pauly, D., Chacana, P. A., Calzado, E. G., Brembs, B. & Schade, R. IgY technology: Extraction of chicken antibodies from egg yolk by polyethylene glycol (PEG) precipitation. JoVE (J. Vis. Exp.) 51, e3084 (2011).
Schade, R. et al. Chicken egg yolk antibodies (IgY-technology): A review of progress in production and use in research and human and veterinary medicine. Altern. Lab. Anim. 33(2), 129–154 (2005). (PMID: 10.1177/02611929050330020816180988)
Chen, C. J. et al. Affordable IgY-based antiviral prophylaxis for resource-limited settings to address epidemic and pandemic risks. J. Glob. Health 12, 05009 (2022). (PMID: 10.7189/jogh.12.05009352653328877785)
Bizanov, G. IgY extraction and purification from chicken egg yolk. J. Hell. Vet. Med. Soc. 68(3), 265–272. https://doi.org/10.12681/jhvms.15466 (2018). (PMID: 10.12681/jhvms.15466)
Amro, W. M., Al-Qaisi, W. & Al-Razem, F. Production and purification of IgY antibodies from chicken egg yolk. J. Genet. Eng. Biotechnol. 16(1), 99–103. https://doi.org/10.1016/j.jgeb.2017.10.003 (2018). (PMID: 10.1016/j.jgeb.2017.10.00330647711)
Layqah, L. A. & Eissa, S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchim. Acta 186, 1–10 (2019). (PMID: 10.1007/s00604-019-3345-5)
Liu, F., Choi, K. S., Park, T. J., Lee, S. Y. & Seo, T. S. Graphene-based electrochemical biosensor for pathogenic virus detection. BioChip J. 5, 123–128 (2011). (PMID: 10.1007/s13206-011-5204-2)
Liv, L. Electrochemical immunosensor platform based on gold-clusters, cysteamine and glutaraldehyde modified electrode for diagnosing COVID-19. Microchem. J. 168, 106445 (2021). (PMID: 10.1016/j.microc.2021.106445340541478141695)
Alonaizan, F. et al. Sensitivity and specificity of rapid SARS-CoV-2 antigen detection using different sampling methods: A clinical unicentral study. Int. J. Environ. Res. Public Health 19(11), 6836. https://doi.org/10.3390/ijerph19116836 (2022). (PMID: 10.3390/ijerph19116836356824199180118)
Murakami, M. et al. Sensitivity of rapid antigen tests for COVID-19 during the Omicron variant outbreak among players and staff members of the Japan Professional Football League and clubs: A retrospective observational study. BMJ Open 13(1), e067591. https://doi.org/10.1136/bmjopen-2022-067591 (2023). (PMID: 10.1136/bmjopen-2022-06759136717141)
معلومات مُعتمدة: Project No. MPH/2/14/2020 the Scientific Research and Innovation Fund (SRIF)
المشرفين على المادة: 0 (IgY)
0 (RNA, Viral)
0 (Antibodies)
0 (Blood Group Antigens)
تواريخ الأحداث: Date Created: 20240107 Date Completed: 20240109 Latest Revision: 20240110
رمز التحديث: 20240111
مُعرف محوري في PubMed: PMC10772103
DOI: 10.1038/s41598-023-50501-w
PMID: 38185704
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-023-50501-w