دورية أكاديمية

Proteome profile of the cerebellum from α7 nicotinic acetylcholine receptor deficient mice.

التفاصيل البيبلوغرافية
العنوان: Proteome profile of the cerebellum from α7 nicotinic acetylcholine receptor deficient mice.
المؤلفون: Caban KM; Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, München, Germany., Seßenhausen P; Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany., Stöckl JB; Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, München, Germany., Popper B; Biomedical Center (BMC), Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany., Mayerhofer A; Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany., Fröhlich T; Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, München, Germany.
المصدر: Proteomics [Proteomics] 2024 May; Vol. 24 (10), pp. e2300384. Date of Electronic Publication: 2024 Jan 07.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101092707 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-9861 (Electronic) Linking ISSN: 16159853 NLM ISO Abbreviation: Proteomics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH,
مواضيع طبية MeSH: alpha7 Nicotinic Acetylcholine Receptor*/metabolism , alpha7 Nicotinic Acetylcholine Receptor*/genetics , Cerebellum*/metabolism , Proteome*/metabolism , Proteome*/analysis, Animals ; Mice ; Chromatography, Liquid/methods ; Liver/metabolism ; Mice, Knockout ; Proteomics/methods ; Tandem Mass Spectrometry
مستخلص: The alpha7 nicotinic acetylcholine receptor (α7 nAChR; CHRNA7) is expressed in the nervous system and in non-neuronal tissues. Within the central nervous system, it is involved in various cognitive and sensory processes such as learning, attention, and memory. It is also expressed in the cerebellum, where its roles are; however, not as well understood as in the other brain regions. To investigate the consequences of absence of CHRNA7 on the cerebellum proteome, we performed a quantitative nano-LC-MS/MS analysis of samples from CHRNA7 knockout (KO) mice and corresponding wild type (WT) controls. Liver, an organ which does not express this receptor, was analyzed, in comparison. While the liver proteome remained relatively unaltered (three proteins more abundant in KOs), 90 more and 20 less abundant proteins were detected in the cerebellum proteome of the KO mice. The gene ontology analysis of the differentially abundant proteins indicates that the absence of CHRNA7 leads to alterations in the glutamatergic system and myelin sheath in the cerebellum. In conclusion, our dataset provides new insights in the role of CHRNA7 in the cerebellum, which may serve as a basis for future in depth-investigations.
(© 2024 The Authors. PROTEOMICS published by Wiley‐VCH GmbH.)
References: Unwin, N. (2005). Refined structure of the nicotinic acetylcholine receptor at 4Å resolution. Journal of Molecular Biology, 346(4), 967–989.
Seßenhausen, P., Caban, K. M., Kreitmair, N., Peitzsch, M., Stöckl, J. B., Pépin, D., Popper, B., Fröhlich, T., & Mayerhofer, A. (2023). An ovarian phenotype of alpha 7 nicotinic receptor knock out mice. Reproduction, 166(3), 221–234.
Dani, J. A., & Bertrand, D. (2007). Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annual Review of Pharmacology and Toxicology, 47, 699–729.
Weng, P.‐H., Chen, J.‐H., Chen, T.‐F., Sun, Y., Wen, L.‐L., Yip, P.‐K., Chu, Y.‐M, & Chen, Y.‐C. (2016). CHRNA7 polymorphisms and dementia risk: Interactions with apolipoprotein ε4 and cigarette smoking. Scientific Reports, 6(1), 27231.
Corringer, P.‐J., Bertrand, S., Galzi, J.‐L., Devillers‐Thiéry, A., Changeux, J.‐P., & Bertrand, D. (1999). Mutational analysis of the charge selectivity filter of the α7 nicotinic acetylcholine receptor. Neuron, 22(4), 831–843.
Wu, J., Liu, Q., Tang, P., Mikkelsen, J. D., Shen, J., Whiteaker, P., & Yakel, J. L. (2016). Heteromeric α7β2 nicotinic acetylcholine receptors in the brain. Trends in Pharmacological Sciences, 37(7), 562–574.
Whiteaker, P., & George, A. A. (2023). Discoveries and future significance of research into amyloid‐beta/α7‐containing nicotinic acetylcholine receptor (nAChR) interactions. Pharmacological Research, 191, 106743.
Dani, J. A. (2015). Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. International Review of Neurobiology, 124, 3–19.
Dineley, K T., Pandya, A A., & Yakel, J. L. (2015). Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends in Pharmacological Sciences, 36(2), 96–108.
Agulhon, C., Petravicz, J., Mcmullen, A B., Sweger, E. J., Minton, S. K., Taves, S. R., Casper, K. B., Fiacco, T. A., & Mccarthy, K. D. (2008). What is the role of astrocyte calcium in neurophysiology? Neuron, 59(6), 932–946.
Levin, E. D. (2012). α7‐nicotinic receptors and cognition. Current Drug Targets, 13(5), 602–606.
Leiser, S. C., Bowlby, M. R., Comery, T. A., & Dunlop, J. (2009). A cog in cognition: How the α7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacology & Therapeutics, 122(3), 302–311.
Wang, H., Yu, M., Ochani, M., Amella, C. A., Tanovic, M., Susarla, S., Li, J. H., Wang, H., Yang, H., Ulloa, L., Al‐Abed, Y., Czura, C. J., & Tracey, K. J. (2003). Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature, 421(6921), 384–388.
Wessler, I., & Kirkpatrick, C. J. (2008). Acetylcholine beyond neurons: the non‐neuronal cholinergic system in humans. British Journal of Pharmacology, 154(8), 1558–1571.
Shen, J.‐X., & Yakel, J. L. (2012). Functional α7 nicotinic ACh receptors on astrocytes in rat hippocampal CA1 slices. Journal of Molecular Neuroscience, 48(1), 14–21.
Sharma, G., & Vijayaraghavan, S. (2001). Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium‐induced calcium release from intracellular stores. Proceedings of the National Academy of Sciences USA, 98, 4148–4153.
Xu, Z.‐Q., Zhang, W.‐J., Su, D.‐F., Zhang, G.‐Q., & Miao, C‐Y. (2021). Cellular responses and functions of α7 nicotinic acetylcholine receptor activation in the brain: a narrative review. Annals of Translational Medicine, 9(6), 509.
Wu, Y.‐J, Wang, L., Ji, C.‐F., Gu, S.‐F., Yin, Q., & Zuo, J. (2021). The role of α7nAChR‐mediated cholinergic anti‐inflammatory pathway in immune cells. Inflammation, 44(3), 821–834.
Caruncho, H. J., Guidotti, A., Lindstrom, J., Costa, E., & Pesold, C. (1997). Subcellular localization of the α7 nicotinic receptor in rat cerebellar granule cell layer. Neuroreport, 8(6), 1431–1433.
Goldowitz, D. (1998). The cells and molecules that make a cerebellum. Trends in Neurosciences, 21(9), 375–382.
Lee, M. (2002). Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain, 125(7), 1483–1495.
Encyklopaedia, T. E. o. (2015). “Purkinje cell”, in Encyclopedia Britannica.
De Toro, E. D., Juíz, J. M., Smillie, F. I., Lindstrom, J., & Criado, M. (1997). Expression of α 7 neuronal nicotinic receptors during postnatal development of the rat cerebellum. Brain Research Developmental Brain Research, 98(1), 125–133.
Orr‐Urtreger, A., Göldner, F. M., Saeki, M., Lorenzo, I., Goldberg, L., De Biasi, M., Dani, J. A., Patrick, J. W., & Beaudet, A. L. (1997). Mice deficient in the α7 neuronal nicotinic acetylcholine receptor lack α‐bungarotoxin binding sites and hippocampal fast nicotinic currents. The Journal of Neuroscience, 17(23), 9165–9171.
Paylor, R., Nguyen, M., Crawley, J. N., Patrick, J., Beaudet, A., & Orr‐Urtreger, A. (1998). α7 nicotinic receptor subunits are not necessary for hippocampal‐dependent learning or sensorimotor gating: A behavioral characterization of Acra7‐deficient mice. Learning & Memory (Cold Spring Harbor, N.Y.), 5(4‐5), 302–316.
Paulo, J. A., Brucker, W. J., & Hawrot, E. (2009). Proteomic analysis of an α7 nicotinic acetylcholine receptor interactome. Journal of Proteome Research, 8(4), 1849–1858.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding. Analytical Biochemistry, 72, 248–254.
Cox, J., Hein, M. Y., Luber, C. A., Paron, I., Nagaraj, N., & Mann, M. (2014). Accurate proteome‐wide label‐free quantification by delayed normalization and maximal peptide ratio extraction, Termed MaxLFQ*. Molecular & Cellular Proteomics, 13(9), 2513–2526.
Perez‐Riverol, Y., Csordas, A., Bai, J., Bernal‐Llinares, M., Hewapathirana, S., Kundu, D. J., Inuganti, A., Griss, J., Mayer, G., Eisenacher, M., Pérez, E., Uszkoreit, J., Pfeuffer, J., Sachsenberg, T., Yilmaz, S., Tiwary, S., Cox, J., Audain, E., Walzer, M., … Vizcaíno, J. A. (2018). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Research, 47(D1), D442–D450.
Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., & Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13(9), 731–740.
Blighe, K. R. S., & Lewis, M. (2022). Publication‐ready volcano plots with enhanced colouring and labeling. github.
Mulcahy, M. J., Paulo, J. A., & Hawrot, E. (2018). Proteomic investigation of murine neuronal α7‐nicotinic acetylcholine receptor interacting proteins. Journal of Proteome Research, 17(11), 3959–3975.
Huang, Da. W, Sherman, B. T., & Lempicki, R. A. (2008). Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37(1), 1–13.
Cheng, Q., & Yakel, J L. (2015). The effect of α7 nicotinic receptor activation on glutamatergic transmission in the hippocampus. Biochemical Pharmacology, 97(4), 439–444.
Susuki, K. (2010). Myelin: A specialized membrane for cell communication. Nature Education, 3(9), 59.
Rogers, S. W., Gregori, N. Z., Carlson, N., Gahring, L. C., & Noble, M. (2001). Neuronal nicotinic acetylcholine receptor expression by O2A/oligodendrocyte progenitor cells. Glia, 33(4), 306–313.
Yin, H. L. (1987). Gelsolin: Calcium‐ and polyphosphoinositide‐regulated actin‐ modulating protein. BioEssays, 7(4), 176–179.
Gal, J., Bang, Y., & Choi, H. J. (2012). SIRT2 interferes with autophagy‐mediated degradation of protein aggregates in neuronal cells under proteasome inhibition. Neurochemistry International, 61(7), 992–1000.
Quarles, R. H. (2002). Myelin sheaths: glycoproteins involved in their formation, maintenance and degeneration. Cellular and Molecular Life Sciences, 59(11), 1851–1871.
Ambrosius, W., Michalak, S., Kozubski, W., & Kalinowska, A. (2020). Myelin oligodendrocyte glycoprotein antibody‐associated disease: Current insights into the disease pathophysiology, diagnosis and management. International Journal of Molecular Sciences, 22(1), 100.
Yoshikawa, H. (2001). Myelin‐associated oligodendrocytic basic protein modulates the arrangement of radial growth of the axon and the radial component of myelin. Medical Electron Microscopy, 34(3), 160–164.
Brockschnieder, D., Sabanay, H., Riethmacher, D., & Peles, E. (2006). Ermin, a myelinating oligodendrocyte‐specific protein that regulates cell morphology. The Journal of Neuroscience, 26(3), 757.
معلومات مُعتمدة: 432434245 Deutsche Forschungsgemeinschaft
فهرسة مساهمة: Keywords: acetylcholine; cerebellum; mass spectrometry; nicotinic receptor
المشرفين على المادة: 0 (alpha7 Nicotinic Acetylcholine Receptor)
0 (Chrna7 protein, mouse)
0 (Proteome)
تواريخ الأحداث: Date Created: 20240107 Date Completed: 20240514 Latest Revision: 20240712
رمز التحديث: 20240712
DOI: 10.1002/pmic.202300384
PMID: 38185761
قاعدة البيانات: MEDLINE
الوصف
تدمد:1615-9861
DOI:10.1002/pmic.202300384