دورية أكاديمية

HPV-associated oropharyngeal cancer: in search of surrogate biomarkers for early lesions.

التفاصيل البيبلوغرافية
العنوان: HPV-associated oropharyngeal cancer: in search of surrogate biomarkers for early lesions.
المؤلفون: Lim YX; Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA., D'Silva NJ; Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA. njdsilva@umich.edu.; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA. njdsilva@umich.edu.; Rogel Cancer Center, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, USA. njdsilva@umich.edu.
المصدر: Oncogene [Oncogene] 2024 Feb; Vol. 43 (8), pp. 543-554. Date of Electronic Publication: 2024 Jan 08.
نوع المنشور: Journal Article; Review; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 8711562 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5594 (Electronic) Linking ISSN: 09509232 NLM ISO Abbreviation: Oncogene Subsets: MEDLINE
أسماء مطبوعة: Publication: <2002->: Basingstoke : Nature Publishing Group
Original Publication: Basingstoke, Hampshire, UK : Scientific & Medical Division, MacMillan Press, c1987-
مواضيع طبية MeSH: Papillomavirus Infections*/complications , Carcinoma, Squamous Cell* , Oropharyngeal Neoplasms*/genetics, Humans ; Papillomaviridae/genetics ; Biomarkers
مستخلص: The incidence of oropharyngeal cancer (OPSCC) has escalated in the past few decades; this has largely been triggered by high-risk human papillomavirus (HPV). Early cancer screening is needed for timely clinical intervention and may reduce mortality and morbidity, but the lack of knowledge about premalignant lesions for OPSCC poses a significant challenge to early detection. Biomarkers that identify individuals at high risk for OPSCC may act as surrogate markers for precancer but these are limited as only a few studies decipher the multistep progression from HPV infection to OPSCC development. Here, we summarize the current literature describing the multistep progression from oral HPV infection, persistence, and tumor development in the oropharynx. We also examine key challenges that hinder the identification of premalignant lesions in the oropharynx and discuss potential biomarkers for oropharyngeal precancer. Finally, we evaluate novel strategies to improve investigations of the biological process that drives oral HPV persistence and OPSCC, highlighting new developments in the establishment of a genetic progression model for HPV + OPSCC and in vivo models that mimic HPV + OPSCC pathogenesis.
(© 2024. The Author(s).)
References: Sefik Hosal A. Uncommon tumours of the oral cavity and oropharynx. In: Belkacémi Y, Mirimanoff R-O, Ozsahin M, editors. Management of rare adult tumours. Paris: Springer Paris; 2010. p. 97–104.
Kaneko T, Suefuji H, Koto M, Demizu Y, Saitoh J-I, Tsuji H, et al. Multicenter study of carbon-ion radiotherapy for oropharyngeal non-squamous cell carcinoma. In Vivo. 2021;35:2239. (PMID: 34182502828648910.21873/invivo.12496)
Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29:4294–301. (PMID: 21969503322152810.1200/JCO.2011.36.4596)
Jemal A, Simard EP, Dorell C, Noone A-M, Markowitz LE, Kohler B, et al. Annual report to the nation on the status of cancer, 1975–2009, featuring the burden and trends in human papillomavirus (HPV)–associated cancers and HPV vaccination coverage levels. J Natl Cancer Inst. 2013;105:175–201. (PMID: 23297039356562810.1093/jnci/djs491)
Faraji F, Rettig EM, Tsai H-L, El Asmar M, Fung N, Eisele DW, et al. The prevalence of human papillomavirus in oropharyngeal cancer is increasing regardless of sex or race, and the influence of sex and race on survival is modified by human papillomavirus tumor status. Cancer. 2019;125:761–9. (PMID: 3052109210.1002/cncr.31841)
Haeggblom L, Attoff T, Yu J, Holzhauser S, Vlastos A, Mirzae L, et al. Changes in incidence and prevalence of human papillomavirus in tonsillar and base of tongue cancer during 2000-2016 in the Stockholm region and Sweden. Head Neck. 2019;41:1583–90. (PMID: 3058468810.1002/hed.25585)
Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst. 2000;92:709–20. (PMID: 1079310710.1093/jnci/92.9.709)
Chaturvedi AK, Anderson WF, Lortet-Tieulent J, Curado MP, Ferlay J, Franceschi S, et al. Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J Clin Oncol. 2013;31:4550–9. (PMID: 24248688386534110.1200/JCO.2013.50.3870)
Lechner M, Jones OS, Breeze CE, Gilson R. Gender-neutral HPV vaccination in the UK, rising male oropharyngeal cancer rates, and lack of HPV awareness. Lancet Infect Dis. 2019;19:131–2. (PMID: 3072299910.1016/S1473-3099(18)30802-8)
Wittekindt C, Wagner S, Bushnak A, Prigge E-S, von Knebel Doeberitz M, Würdemann N, et al. Increasing incidence rates of oropharyngeal squamous cell carcinoma in Germany and significance of disease burden attributed to human papillomavirus. Cancer Prev Res. 2019;12:375–82. (PMID: 10.1158/1940-6207.CAPR-19-0098)
Zamani M, Grønhøj C, Jensen DH, Carlander AF, Agander T, Kiss K, et al. The current epidemic of HPV-associated oropharyngeal cancer: an 18-year Danish population-based study with 2,169 patients. Eur J Cancer. 2020;134:52–9. (PMID: 3246018110.1016/j.ejca.2020.04.027)
Combes J-D, Franceschi S. Role of human papillomavirus in non-oropharyngeal head and neck cancers. Oral Oncol. 2014;50:370–9. (PMID: 2433186810.1016/j.oraloncology.2013.11.004)
Castellsagué X, Alemany L, Quer M, Halec G, Quirós B, Tous S, et al. HPV involvement in head and neck cancers: comprehensive assessment of biomarkers in 3680 patients. J Natl Cancer Inst. 2016;108:407–20.
Mahal BA, Catalano PJ, Haddad RI, Hanna GJ, Kass JI, Schoenfeld JD, et al. Incidence and demographic burden of HPV-associated oropharyngeal head and neck cancers in the United States. Cancer Epidemiol Biomark Prev.2019;28:1660–7. (PMID: 10.1158/1055-9965.EPI-19-0038)
D’Souza G, Westra WH, Wang SJ, van Zante A, Wentz A, Kluz N, et al. Differences in the prevalence of human papillomavirus (HPV) in head and neck squamous cell cancers by sex, race, anatomic tumor site, and HPV detection method. JAMA Oncol. 2017;3:169–77. (PMID: 27930766728634610.1001/jamaoncol.2016.3067)
Damgacioglu H, Sonawane K, Zhu Y, Li R, Balasubramanian BA, Lairson DR, et al. Oropharyngeal cancer incidence and mortality trends in all 50 states in the US, 2001-2017. JAMA Otolaryngol–Head Neck Surg. 2022;148:155–65. (PMID: 3491394510.1001/jamaoto.2021.3567)
Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tân PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl J Med. 2010;363:24–35. (PMID: 20530316294376710.1056/NEJMoa0912217)
Anantharaman D, Muller DC, Lagiou P, Ahrens W, Holcátová I, Merletti F, et al. Combined effects of smoking and HPV16 in oropharyngeal cancer. Int J Epidemiol. 2016;45:752–61. (PMID: 27197530584160210.1093/ije/dyw069)
Zumsteg ZS, Cook-Wiens G, Yoshida E, Shiao SL, Lee NY, Mita A, et al. Incidence of oropharyngeal cancer among elderly patients in the United States. JAMA Oncol. 2016;2:1617–23. (PMID: 2741563910.1001/jamaoncol.2016.1804)
Dickstein DR, Egerman MA, Bui AH, Doucette JT, Sharma S, Liu J, et al. A new face of the HPV epidemic: oropharyngeal cancer in the elderly. Oral Oncol. 2020;109:104687. (PMID: 32882642955626310.1016/j.oraloncology.2020.104687)
Rettig EM, Fakhry C, Khararjian A, Westra WH. Age profile of patients with oropharyngeal squamous cell carcinoma. JAMA Otolaryngol–Head Neck Surg. 2018;144:538–9. (PMID: 29710071593345810.1001/jamaoto.2018.0310)
Giuliano AR, Felsher M, Waterboer T, Mirghani H, Mehanna H, Roberts C, et al. Oral human papillomavirus prevalence and genotyping among a healthy adult population in the US. JAMA Otolaryngol–Head Neck Surg. 2023;149:783–95. (PMID: 375353491040139610.1001/jamaoto.2023.1573)
Gillison ML, Broutian T, Pickard RKL, Tong Z-y, Xiao W, Kahle L, et al. Prevalence of oral HPV infection in the United States, 2009-2010. JAMA. 2012;307:693–703. (PMID: 22282321579018810.1001/jama.2012.101)
Windon MJ, D’Souza G, Rettig EM, Westra WH, van Zante A, Wang SJ, et al. Increasing prevalence of human papillomavirus–positive oropharyngeal cancers among older adults. Cancer. 2018;124:2993–9. (PMID: 2971039310.1002/cncr.31385)
Rettig EM, Zaidi M, Faraji F, Eisele DW, El Asmar M, Fung N, et al. Oropharyngeal cancer is no longer a disease of younger patients and the prognostic advantage of Human Papillomavirus is attenuated among older patients: analysis of the National Cancer Database. Oral Oncol. 2018;83:147–53. (PMID: 30098771650073210.1016/j.oraloncology.2018.06.013)
Fakhry C, Zhang Q, Nguyen-Tan PF, Rosenthal D, El-Naggar A, Garden AS, et al. Human papillomavirus and overall survival after progression of oropharyngeal squamous cell carcinoma. J Clin Oncol. 2014;32:3365–73. (PMID: 24958820419585110.1200/JCO.2014.55.1937)
Gillison ML, Trotti AM, Harris J, Eisbruch A, Harari PM, Adelstein DJ, et al. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial. Lancet. 2019;393:40–50. (PMID: 3044962510.1016/S0140-6736(18)32779-X)
Yom SS, Torres-Saavedra P, Caudell JJ, Waldron JN, Gillison ML, Xia P, et al. Reduced-dose radiation therapy for HPV-associated oropharyngeal carcinoma (NRG Oncology HN002). J Clin Oncol. 2021;39:956–65. (PMID: 33507809807825410.1200/JCO.20.03128)
Jellema AP, Slotman BJ, Doornaert P, Leemans CR, Langendijk JA. Impact of radiation-induced xerostomia on quality of life after primary radiotherapy among patients with head and neck cancer. Int J Radiat Oncol, Biol, Phys. 2007;69:751–60. (PMID: 1756073510.1016/j.ijrobp.2007.04.021)
Langendijk JA, Doornaert P, Verdonck-de Leeuw IM, Leemans CR, Aaronson NK, Slotman BJ. Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy. J Clin Oncol. 2008;26:3770–6. (PMID: 1866946510.1200/JCO.2007.14.6647)
Youssef I, Yoon J, Mohamed N, Zakeri K, Press RH, Chen L, et al. Toxicity profiles and survival outcomes among patients with nonmetastatic oropharyngeal carcinoma treated with intensity-modulated proton therapy vs intensity-modulated radiation therapy. JAMA Netw Open. 2022;5:e2241538–e. (PMID: 36367724965275310.1001/jamanetworkopen.2022.41538)
Lim YX, Mierzwa ML, Sartor MA, D’Silva NJ. Clinical, morphologic and molecular heterogeneity of HPV-associated oropharyngeal cancer. Oncogene 2023; 42, 2939–55.
Kreimer AR, Chaturvedi AK. HPV-associated oropharyngeal cancers—are they preventable? Cancer Prev Res. 2011;4:1346–9. (PMID: 10.1158/1940-6207.CAPR-11-0379)
Gillison ML, Akagi K, Xiao W, Jiang B, Pickard RKL, Li J, et al. Human papillomavirus and the landscape of secondary genetic alterations in oral cancers. Genome Res. 2019;29:1–17. (PMID: 30563911631416210.1101/gr.241141.118)
Chae J, Park WS, Kim MJ, Jang SS, Hong D, Ryu J, et al. Genomic characterization of clonal evolution during oropharyngeal carcinogenesis driven by human papillomavirus 16. BMB Rep. 2018;51:584–9. (PMID: 29936930628302810.5483/BMBRep.2018.51.11.091)
McIlwain WR, Sood AJ, Nguyen SA, Day TA. Initial symptoms in patients With HPV-positive and HPV-negative oropharyngeal cancer. JAMA Otolaryngol–Head Neck Surg. 2014;140:441–7. (PMID: 2465202310.1001/jamaoto.2014.141)
Guggenheimer J, Verbin RS, Johnson JT, Horkowitz CA, Myers EN. Factors delaying the diagnosis of oral and oropharyngeal carcinomas. Cancer. 1989;64:932–5. (PMID: 274328410.1002/1097-0142(19890815)64:4<932::AID-CNCR2820640428>3.0.CO;2-Y)
Kero K, Rautava J, Syrjänen K, Grenman S, Syrjänen S. Oral mucosa as a reservoir of human papillomavirus: point prevalence, genotype distribution, and incident infections among males in a 7-year prospective study. Eur Urol. 2012;62:1063–70. (PMID: 2277126710.1016/j.eururo.2012.06.045)
Agalliu I, Gapstur S, Chen Z, Wang T, Anderson RL, Teras L, et al. Associations of oral α-, β-, and γ-human papillomavirus types with risk of incident head and neck cancer. JAMA Oncol. 2016;2:599–606. (PMID: 26794505495658410.1001/jamaoncol.2015.5504)
Ndiaye C, Mena M, Alemany L, Arbyn M, Castellsagué X, Laporte L, et al. HPV DNA, E6/E7 mRNA, and p16I NK4a detection in head and neck cancers: a systematic review and meta-analysis. Lancet Oncol. 2014;15:1319–31. (PMID: 2543969010.1016/S1470-2045(14)70471-1)
Mehanna H, Taberna M, von Buchwald C, Tous S, Brooks J, Mena M, et al. Prognostic implications of p16 and HPV discordance in oropharyngeal cancer (HNCIG-EPIC-OPC): a multicentre, multinational, individual patient data analysis. Lancet Oncol. 2023;24:239–51.
D’Souza G, Fakhry C, Sugar EA, Seaberg EC, Weber K, Minkoff HL, et al. Six-month natural history of oral versus cervical human papillomavirus infection. Int J Cancer. 2007;121:143–50. (PMID: 1735423510.1002/ijc.22667)
Cañadas MP, Bosch FX, Junquera ML, Ejarque M, Font R, Ordoñez E, et al. Concordance of prevalence of human papillomavirus DNA in anogenital and oral infections in a high-risk population. J Clin Microbiol. 2004;42:1330–2. (PMID: 1500411135684510.1128/JCM.42.3.1330-1332.2004)
Andrew FB, Lora PC, Heather MW, Brittany MM, Christine MG, Trey BT, et al. Incidence and clearance of oral and cervicogenital HPV infection: longitudinal analysis of the MHOC cohort study. BMJ Open. 2022;12:e056502. (PMID: 10.1136/bmjopen-2021-056502)
Steinau M, Hariri S, Gillison ML, Broutian TR, Dunne EF, Tong Z-y, et al. Prevalence of cervical and oral human papillomavirus infections among US women. J Infect Dis. 2013;209:1739–43. (PMID: 24319284412291510.1093/infdis/jit799)
Dahlstrom KR, Burchell AN, Ramanakumar AV, Rodrigues A, Tellier P-P, Hanley J, et al. Sexual transmission of oral human papillomavirus infection among men. Cancer Epidemiol Biomark Prev. 2014;23:2959–64. (PMID: 10.1158/1055-9965.EPI-14-0386)
D’Souza G, Agrawal Y, Halpern J, Bodison S, Gillison ML. Oral sexual behaviors associated with prevalent oral human papillomavirus infection. J Infect Dis. 2009;199:1263–9. (PMID: 1932058910.1086/597755)
D’Souza G, Kreimer AR, Viscidi R, Pawlita M, Fakhry C, Koch WM, et al. Case–control study of human papillomavirus and oropharyngeal cancer. N Engl J Med. 2007;356:1944–56. (PMID: 1749492710.1056/NEJMoa065497)
Beachler DC, Weber KM, Margolick JB, Strickler HD, Cranston RD, Burk RD, et al. Risk factors for oral HPV infection among a high prevalence population of HIV-positive and at-risk HIV-negative adults. Cancer Epidemiol Biomark Prev. 2012;21:122–33. (PMID: 10.1158/1055-9965.EPI-11-0734)
Edelstein ZR, Schwartz SM, Hawes S, Hughes JP, Feng Q, Stern ME, et al. Rates and determinants of oral human papillomavirus infection in young men. Sex Transm Dis. 2012;39(11): 860–67.
Drake VE, Fakhry C, Windon MJ, Stewart CM, Akst L, Hillel A, et al. Timing, number, and type of sexual partners associated with risk of oropharyngeal cancer. Cancer. 2021;127:1029–38. (PMID: 3342665210.1002/cncr.33346)
Wierzbicka M, San Giorgi MRM, Dikkers FG. Transmission and clearance of human papillomavirus infection in the oral cavity and its role in oropharyngeal carcinoma—a review. Rev Med Virol. 2023;33:e2337. (PMID: 3519487410.1002/rmv.2337)
Rintala MAM, Grénman SE, Puranen MH, Isolauri E, Ekblad U, Kero PO, et al. Transmission of high-risk human papillomavirus (HPV) between parents and infant: a prospective study of HPV in families in Finland. J Clin Microbiol. 2005;43:376–81. (PMID: 1563499754018810.1128/JCM.43.1.376-381.2005)
Chen R, Sehr P, Waterboer T, Leivo I, Pawlita M, Vaheri A, et al. Presence of DNA of human papillomavirus 16 but no other types in tumor-free tonsillar tissue. J Clin Microbiol. 2005;43:1408–10. (PMID: 15750119108122310.1128/JCM.43.3.1408-1410.2005)
Schelhaas M, Shah B, Holzer M, Blattmann P, Kühling L, Day PM, et al. Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLOS Pathog. 2012;8:e1002657. (PMID: 22536154333489210.1371/journal.ppat.1002657)
Spoden G, Kühling L, Cordes N, Frenzel B, Sapp M, Boller K, et al. Human papillomavirus types 16, 18, and 31 share similar endocytic requirements for entry. J Virol. 2013;87:7765–73. (PMID: 23616662370029610.1128/JVI.00370-13)
DiGiuseppe S, Bienkowska-Haba M, Hilbig L, Sapp M. The nuclear retention signal of HPV16 L2 protein is essential for incoming viral genome to transverse the trans-Golgi network. Virology. 2014;458-459:93–105. (PMID: 2492804210.1016/j.virol.2014.04.024)
Lipovsky A, Popa A, Pimienta G, Wyler M, Bhan A, Kuruvilla L, et al. Genome-wide siRNA screen identifies the retromer as a cellular entry factor for human papillomavirus. Proc Natl Acad Sci USA. 2013;110:7452–7. (PMID: 23569269364551410.1073/pnas.1302164110)
Popa A, Zhang W, Harrison MS, Goodner K, Kazakov T, Goodwin EC, et al. Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection. PLOS Pathog. 2015;11:e1004699. (PMID: 25693203433496810.1371/journal.ppat.1004699)
Crite M, DiMaio D. Human papillomavirus L2 capsid protein stabilizes γ-secretase during viral infection. Viruses. 2022;14:804.
Inoue T, Zhang P, Zhang W, Goodner-Bingham K, Dupzyk A, DiMaio D, et al. γ-Secretase promotes membrane insertion of the human papillomavirus L2 capsid protein during virus infection. J Cell Biol. 2018;217:3545–59. (PMID: 30006461616825710.1083/jcb.201804171)
Zhang W, Kazakov T, Popa A, DiMaio D, Dermody TS. Vesicular trafficking of incoming human papillomavirus 16 to the Golgi apparatus and endoplasmic reticulum requires γ-secretase activity. mBio 2014;5:e01777–14. (PMID: 25227470417207810.1128/mBio.01777-14)
Calton CM, Bronnimann MP, Manson AR, Li S, Chapman JA, Suarez-Berumen M, et al. Translocation of the papillomavirus L2/vDNA complex across the limiting membrane requires the onset of mitosis. PLOS Pathog. 2017;13:e1006200. (PMID: 28463988541299010.1371/journal.ppat.1006200)
Bienkowska-Haba M, Williams C, Kim SM, Garcea RL, Sapp M. Cyclophilins facilitate dissociation of the human papillomavirus type 16 capsid protein l1 from the L2/DNA complex following virus entry. J Virol. 2012;86:9875–87. (PMID: 22761365344662910.1128/JVI.00980-12)
Aydin I, Weber S, Snijder B, Samperio Ventayol P, Kühbacher A, Becker M, et al. Large scale RNAi reveals the requirement of nuclear envelope breakdown for nuclear import of human papillomaviruses. PLOS Pathog. 2014;10:e1004162. (PMID: 24874089403862810.1371/journal.ppat.1004162)
Pyeon D, Pearce SM, Lank SM, Ahlquist P, Lambert PF. Establishment of human papillomavirus infection requires cell cycle progression. PLOS Pathog. 2009;5:e1000318. (PMID: 19247434264259610.1371/journal.ppat.1000318)
DiGiuseppe S, Luszczek W, Keiffer TR, Bienkowska-Haba M, Guion LG, Sapp MJ. Incoming human papillomavirus type 16 genome resides in a vesicular compartment throughout mitosis. Proc Natl Acad Sci. 2016;113:6289–94. (PMID: 27190090489670210.1073/pnas.1600638113)
Rizzato M, Mao F, Chardon F, Lai K-Y, Villalonga-Planells R, Drexler HCA, et al. Master mitotic kinases regulate viral genome delivery during papillomavirus cell entry. Nat Commun. 2023;14:355. (PMID: 36683055986812410.1038/s41467-023-35874-w)
Egawa N, Nakahara T, Ohno S-i, Narisawa-Saito M, Yugawa T, Fujita M, et al. The E1 protein of human papillomavirus type 16 is dispensable for maintenance replication of the viral genome. J Virol. 2012;86:3276–83. (PMID: 22238312330231010.1128/JVI.06450-11)
Graham Sheila V, Sullivan CS. Human papillomavirus E2 protein: linking replication, transcription, and RNA processing. J Virol. 90:8384–8.
Tine BAV, Dao LD, Wu S-Y, Sonbuchner TM, Lin BY, Zou N, et al. Human papillomavirus (HPV) origin-binding protein associates with mitotic spindles to enable viral DNA partitioning. Proc Natl Acad Sci. 2004;101:4030–5. (PMID: 1502076238469010.1073/pnas.0306848101)
Oliveira JG, Colf LA, McBride AA. Variations in the association of papillomavirus E2 proteins with mitotic chromosomes. Proc Natl Acad Sci. 2006;103:1047–52. (PMID: 16415162132648710.1073/pnas.0507624103)
Maglennon GA, McIntosh P, Doorbar J. Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regression. Virology. 2011;414:153–63. (PMID: 2149289510.1016/j.virol.2011.03.019)
White EA. Manipulation of epithelial differentiation by HPV oncoproteins. Viruses. 2019;11:369. (PMID: 31013597654944510.3390/v11040369)
Cheng S, Schmidt-Grimminger DC, Murant T, Broker TR, Chow LT. Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev 1995;9:2335–49. (PMID: 755738610.1101/gad.9.19.2335)
Yukawa K, Butz K, Yasui T, Kikutani H, Hoppe-Seyler F. Regulation of human papillomavirus transcription by the differentiation-dependent epithelial factor Epoc-1/skn-1a. J Virol. 1996;70:10–6. (PMID: 852351218978110.1128/jvi.70.1.10-16.1996)
Mantovani F, Banks L. The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene. 2001;20:7874–87. (PMID: 1175367010.1038/sj.onc.1204869)
Wallace NA, Galloway DA. Novel functions of the human papillomavirus E6 oncoproteins. Annu Rev Virol. 2015;2:403–23. (PMID: 2695892210.1146/annurev-virology-100114-055021)
Ganti K, Broniarczyk J, Manoubi W, Massimi P, Mittal S, Pim D, et al. The human papillomavirus E6 PDZ binding motif: from life cycle to malignancy. Viruses. 2015;7:3530–3551.
Giarrè M, Caldeira S, Malanchi I, Ciccolini F, Leão MJ, Tommasino M. Induction of pRb degradation by the human papillomavirus type 16 E7 protein is essential to efficiently overcome p16 INK4a -imposed G 1 cell cycle arrest. J Virol. 2001;75:4705–12. (PMID: 1131234211422510.1128/JVI.75.10.4705-4712.2001)
Khleif SN, DeGregori J, Yee CL, Otterson GA, Kaye FJ, Nevins JR, et al. Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. Proc Natl Acad Sci. 1996;93:4350–4. (PMID: 86330693954010.1073/pnas.93.9.4350)
McLaughlin-Drubin ME, Crum CP, Münger K. Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming. Proc Natl Acad Sci. 2011;108:2130–5. (PMID: 21245294303331410.1073/pnas.1009933108)
Hatterschide J, Bohidar AE, Grace M, Nulton TJ, Kim HW, Windle B, et al. PTPN14 degradation by high-risk human papillomavirus E7 limits keratinocyte differentiation and contributes to HPV-mediated oncogenesis. Proc Natl Acad Sci. 2019;116:7033–42. (PMID: 30894485645270610.1073/pnas.1819534116)
Hatterschide J, Brantly AC, Grace M, Munger K, White EA. A conserved amino acid in the C terminus of human papillomavirus E7 mediates binding to PTPN14 and repression of epithelial differentiation. J Virol. 2020;94. https://doi.org/10.1128/jvi.01024-20 .
Hatterschide J, Castagnino P, Kim HW, Sperry SM, Montone KT, Basu D, et al. YAP1 activation by human papillomavirus E7 promotes basal cell identity in squamous epithelia. eLife. 2022;11:e75466. (PMID: 35170430895959810.7554/eLife.75466)
Müller M, Prescott EL, Wasson CW, Macdonald A. Human papillomavirus E5 oncoprotein: function and potential target for antiviral therapeutics. Future Virol. 2015;10:27–39. (PMID: 10.2217/fvl.14.99)
Doorbar J. The E4 protein; structure, function and patterns of expression. Virology. 2013;445:80–98. (PMID: 2401653910.1016/j.virol.2013.07.008)
Wasson CW, Morgan EL, Müller M, Ross RL, Hartley M, Roberts S, et al. Human papillomavirus type 18 E5 oncogene supports cell cycle progression and impairs epithelial differentiation by modulating growth factor receptor signalling during the virus life cycle. Oncotarget. 2017;8:103581–600. (PMID: 29262586573275210.18632/oncotarget.21658)
Davy CE, Jackson DJ, Raj K, Peh WL, Southern SA, Das P, et al. Human papillomavirus type 16 E1^E4-induced G 2 arrest is associated with cytoplasmic retention of active Cdk1/Cyclin B1 complexes. J Virol. 2005;79:3998–4011. (PMID: 15767402106152010.1128/JVI.79.7.3998-4011.2005)
Davy C, McIntosh P, Jackson DJ, Sorathia R, Miell M, Wang Q, et al. A novel interaction between the human papillomavirus type 16 E2 and E1^E4 proteins leads to stabilization of E2. Virology. 2009;394:266–75. (PMID: 1978327210.1016/j.virol.2009.08.035)
Johansson C, Somberg M, Li X, Backström Winquist E, Fay J, Ryan F, et al. HPV-16 E2 contributes to induction of HPV-16 late gene expression by inhibiting early polyadenylation. EMBO J. 2012;31:3212–27. (PMID: 22617423340001110.1038/emboj.2012.147)
Khan J, Davy CE, McIntosh PB, Jackson DJ, Hinz S, Wang Q, et al. Role of calpain in the formation of human papillomavirus type 16 E1^E4 amyloid fibers and reorganization of the keratin network. J Virol. 2011;85:9984–97. (PMID: 21752901319640710.1128/JVI.02158-10)
Kreimer AR, Pierce Campbell CM, Lin H-Y, Fulp W, Papenfuss MR, Abrahamsen M, et al. Incidence and clearance of oral human papillomavirus infection in men: the HIM cohort study. Lancet. 2013;382:877–87. (PMID: 23827089390465210.1016/S0140-6736(13)60809-0)
D’Souza G, Clemens G, Strickler HD, Wiley DJ, Troy T, Struijk L, et al. Long-term persistence of oral HPV over 7 years of follow-up. JNCI Cancer Spectrum. 2020;4:pkaa047.
Bettampadi D, Sirak BA, Abrahamsen ME, Reich RR, Villa LL, Ponce EL, et al. Factors associated with persistence and clearance of high-risk oral human papillomavirus (HPV) among participants in the HPV infection in men (HIM) study. Clin Infect Dis. 2020;73:e3227–e34. (PMID: 856321810.1093/cid/ciaa1701)
Kreimer AR, Ferreiro-Iglesias A, Nygard M, Bender N, Schroeder L, Hildesheim A, et al. Timing of HPV16-E6 antibody seroconversion before OPSCC: findings from the HPVC3 consortium. Ann Oncol. 2019;30:1335–43. (PMID: 31185496668385610.1093/annonc/mdz138)
Garset-Zamani M, Carlander AF, Jakobsen KK, Friborg J, Kiss K, Marvig RL, et al. Impact of specific high-risk human papillomavirus genotypes on survival in oropharyngeal cancer. Int J Cancer. 2022;150:1174–83. (PMID: 3489415110.1002/ijc.33893)
Mashiana SS, Navale P, Khandakar B, Sobotka S, Posner MR, Miles BA, et al. Human papillomavirus genotype distribution in head and neck cancer: Informing developing strategies for cancer prevention, diagnosis, treatment and surveillance. Oral Oncol. 2021;113:105109. (PMID: 3323284810.1016/j.oraloncology.2020.105109)
LeConte BA, Szaniszlo P, Fennewald SM, Lou DI, Qiu S, Chen N-W, et al. Differences in the viral genome between HPV-positive cervical and oropharyngeal cancer. PLOS ONE. 2018;13:e0203403. (PMID: 30161236611706910.1371/journal.pone.0203403)
Lewis JS Jr, Beadle B, Bishop JA, Chernock RD, Colasacco C, Lacchetti C, et al. Human papillomavirus testing in head and neck carcinomas: guideline from the College of American Pathologists. Arch Pathol Lab Med. 2017;142:559–97. (PMID: 2925199610.5858/arpa.2017-0286-CP)
Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians 2021;71:209–49. https://doi.org/10.3322/caac.21660 .
Ferlay, J. et al. Cancer statistics for the year 2020: An overview. International Journal of Cancer 2021;149:778–89. https://doi.org/10.1002/ijc.33588 .
Ferlay J, L. M., Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F. Global Cancer Observatory: Cancer Tomorrow 2020. https://gco.iarc.fr/tomorrow .
Ferlay J, E. M., Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F Global Cancer Observatory: Cancer Today 2020. https://gco.iarc.fr/today.
Data, O. W. i. Human Development Index 2017, 2022.
معلومات مُعتمدة: R01 CA250214 United States CA NCI NIH HHS; R35 DE027551 United States DE NIDCR NIH HHS
المشرفين على المادة: 0 (Biomarkers)
تواريخ الأحداث: Date Created: 20240108 Date Completed: 20240219 Latest Revision: 20240816
رمز التحديث: 20240817
مُعرف محوري في PubMed: PMC10873204
DOI: 10.1038/s41388-023-02927-9
PMID: 38191674
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5594
DOI:10.1038/s41388-023-02927-9