دورية أكاديمية

Luminescent Properties of β-(hydroxyaryl)-butenolides and Fluorescence Quenching in Water.

التفاصيل البيبلوغرافية
العنوان: Luminescent Properties of β-(hydroxyaryl)-butenolides and Fluorescence Quenching in Water.
المؤلفون: Finêncio BM; Faculdade de Engenharia de Ilha Solteira, Departamento de Física e Química, Universidade Estadual Paulista (Unesp), Ilha Solteira, SP, Brazil., Santos FA; Faculdade de Engenharia de Ilha Solteira, Departamento de Física e Química, Universidade Estadual Paulista (Unesp), Ilha Solteira, SP, Brazil., Parreira RLT; Núcleo de Pesquisas Em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil., Orenha RP; Núcleo de Pesquisas Em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil., Lima SM; Centro de Estudos em Recursos Naturais - CERNA, Universidade Estadual de Mato Grosso do Sul - UEMS, Dourados, MS, 79823-351, Brazil., Andrade LHC; Centro de Estudos em Recursos Naturais - CERNA, Universidade Estadual de Mato Grosso do Sul - UEMS, Dourados, MS, 79823-351, Brazil., Ventura M; Centro de Estudos em Recursos Naturais - CERNA, Universidade Estadual de Mato Grosso do Sul - UEMS, Dourados, MS, 79823-351, Brazil., da Silva de Laurentiz R; Faculdade de Engenharia de Ilha Solteira, Departamento de Física e Química, Universidade Estadual Paulista (Unesp), Ilha Solteira, SP, Brazil. rosangela.laurentiz@unesp.br.
المصدر: Journal of fluorescence [J Fluoresc] 2024 Jan 09. Date of Electronic Publication: 2024 Jan 09.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer- Country of Publication: Netherlands NLM ID: 9201341 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-4994 (Electronic) Linking ISSN: 10530509 NLM ISO Abbreviation: J Fluoresc Subsets: MEDLINE
أسماء مطبوعة: Publication: Amsterdam : Springer-
Original Publication: New York : Plenum Press, c1991-
مستخلص: This work describes the luminescent properties of the new compound β-(hydroxyaryl)-butenolides recently discovered. The compounds were subjected to UV-Vis absorption and fluorescence analyzes when diluted in different solvents. Through the results, it was possible to observe that the β-hydroxyarylutenolides have two absorption bands, one at 289-291 nm and the other with higher intensity at 328-354 nm. The emission band between 385-422 nm is observed under excitation at 324-327 nm. The compounds showed solvatochromism as a function of the analyzed solvent. In water, fluorescence quenching of all compounds occurs. Therefore, studies with compound containing the methylenedioxy group attached in phenyl ring were carried at different concentrations of water in DMSO. The decrease in the fluorescence intensity of this compound is linearly proportional to the increase in the amount of water in the DMSO, with a minimum detection volume of 0.028%. Quantum yields of three compounds were evaluated in different solvents, showing that the relationship between the structure of the compound and the solvent is essential for a high value. The fluorescence quantum yield was also measured by Thermal Lens Spectroscopy (TLS) using DMSO as the solvent, confirming the high value for the analyzed samples. Despite being preliminary, the studies revealed that these compounds have luminescent properties that could be applied in the development of chemical sensors for detecting water in DMSO.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Bao Y (2021) Organic fluorescent materials as chemical sensors. Chemosensors 9:308. https://doi.org/10.3390/chemosensors9110308. (PMID: 10.3390/chemosensors9110308)
Lu X, Zhan Y, He W (2022) Recent development of small-molecule fluorescent probes based on phenothiazine and its derivates. J Photochem Photobiol B Biol 234:112528. https://doi.org/10.1016/j.jphotobiol.2022.112528. (PMID: 10.1016/j.jphotobiol.2022.112528)
Tan J, Wang C, Lao HK, Feng G, Li G, Wang W, Yuan D, Wu C, Zhang X (2019) Efficient synthesis and facile functionalization of highly fluorescent spiro[pyrrol-pyran]. Dyes Pigm 171:107777. https://doi.org/10.1016/j.dyepig.2019.107777. (PMID: 10.1016/j.dyepig.2019.107777)
Liu H, Li X (2016) Photophysical properties of perylenetetracarboxylic diimide dimers with slipped “face-to-face” stacked structure and different bay substitutions. J Mater Sci Chem Eng 4:1–8. https://doi.org/10.4236/msce.2016.46001. (PMID: 10.4236/msce.2016.46001)
Abreu MP, Nunes AC, Coelho FL, Campo LF (2019) Highly conjugated streptocyanine-ESIPT dyes via Vilsmeier-Haack reagent. J Lumin 213:98. https://doi.org/10.1016/j.jlumin.2019.04.063. (PMID: 10.1016/j.jlumin.2019.04.063)
Santos FA, Tondato WN, Parreira RLT, Orenha RP, Lourenço LCL, Laurentiz RS (2020) Synthesis and luminescent properties of new naphthoquinoline lactone derivatives. J Lumin 227:117547. https://doi.org/10.1016/j.jlumin.2020.117547. (PMID: 10.1016/j.jlumin.2020.117547)
Tabuchi A, Hayakawa T, Kuwata S, Ishige R, Ando S (2021) Full-colour solvatochromic fluorescence emitted from a semi-aromatic imide compound based on ESIPT and anion formation. Mater Adv 2:5629. https://doi.org/10.1039/D1MA00308A. (PMID: 10.1039/D1MA00308A)
Ji F, Wu Z, Wang M, Guo Y, Wang C, Wang S, Zhao G (2022) New insights into the excited state intramolecular proton transfer (ESIPT) competition mechanism for different intramolecular hydrogen bonds of Kaempferol and Quercetin in solution. J Lumin 248:118914. https://doi.org/10.1016/j.jlumin.2022.118914. (PMID: 10.1016/j.jlumin.2022.118914)
Zheng M, Li Y, Zhang Y, Xie Z (2016) Solvatochromic fluorescent carbon dots as optic noses for sensing volatile organic compounds. RSC Adv 6:83501. https://doi.org/10.1039/C6RA16055G. (PMID: 10.1039/C6RA16055G)
Zhao J, Dong H, Yang H, Zheng Y (2019) Solvent-polarity-dependent excited-state behavior and thermally active delayed fluorescence for triquinolonobenzene. ACS Appl Bio Mater 2:2060. https://doi.org/10.1021/acsabm.9b00088. (PMID: 10.1021/acsabm.9b0008835030694)
Anandhan K, Ceróna M, Perumal V et al (2019) Solvatochromism and pH effect on the emission of a triphenylimidazole-phenylacrylonitrile derivative: experimental and DFT studies. RSC Adv 9:12085. https://doi.org/10.1039/C9RA01275C. (PMID: 10.1039/C9RA01275C355170079063490)
Dobretsov GE, Syrejschikova TI, Smolina NV (2014) On mechanisms of fluorescence quenching by water. Biophys 59:183. https://doi.org/10.1134/S0006350914020079. (PMID: 10.1134/S0006350914020079)
Maillard J, Klehs K, Rumble C, Vauthey E, Heilemann M, Fürstenberg A (2021) Universal quenching of common fluorescent probes by water and alcohols. Chem Sci 12:1352. https://doi.org/10.1039/D0SC05431C. (PMID: 10.1039/D0SC05431C)
Bisballe N, Laursen BW (2020) What is best strategy for water soluble fluorescence dyes?—A case study using long fluorescence lifetime DAOTA dyes. Eur J Chem 26:15969. https://doi.org/10.1002/chem.202002457. (PMID: 10.1002/chem.202002457)
Jung HS, Verwilst P, Kim WY, Kim JS (2016) Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem Soc Rev 45:1242. https://doi.org/10.1039/C5CS00494B. (PMID: 10.1039/C5CS00494B26766615)
Naidoo D, Pošta M, Roy A, Kulkarni M, Staden JV (2019) Synthesis of potent neuroprotective butenolides based on plant smoke derived 3,4,5-Trimethylfuran-2(5H)-one and 3-methyl-2H-furo[2,3-c]pyrone-2-one. Phytochem 163:187. https://doi.org/10.1016/j.phytochem.2019.03.014. (PMID: 10.1016/j.phytochem.2019.03.014)
Vallet M, Chong YM, Tourneroche A et al (2020) Novel α-hydroxy γ-butenolides of kelp endophytes disrupt bacterial cell-to-cell signaling. Front Mar Sci 7:601. https://doi.org/10.3389/fmars.2020.00601. (PMID: 10.3389/fmars.2020.00601)
Bedir E, Karakoyun Ç, Doğan G, Kuru G, Küçüksolak M, Yusufoğlu H (2021) New cardenolides from biotransformation of gitoxigenin by the endophytic fungus Alternaria eureka 1E1BL1: characterization and cytotoxic activities. Molecules 26:3030. https://doi.org/10.3390/molecules26103030. (PMID: 10.3390/molecules26103030340696538161373)
Gao M, Lee SB, Lee JE et al (2022) Anti-inflammatory butenolides from a marine-derived Streptomyces sp. 13G036. App Sci 12:4510. https://doi.org/10.3390/app12094510. (PMID: 10.3390/app12094510)
Chaterjee S, Sahoo R, Nanda S (2021) Recent reports on the synthesis of γ-butenolide, γ-alkylidenebutenolide frameworks, and related natural products. Org Biomol Chem 19:7298. https://doi.org/10.1039/D1OB00875G. (PMID: 10.1039/D1OB00875G)
Tadiparthi K, Venkatesh S (2022) Synthetic approaches toward butenolide-containing natural product. J Heterocycl Chem 59:1285. https://doi.org/10.1002/jhet.4480. (PMID: 10.1002/jhet.4480)
He B, Luo W, Hu S, Chen B, Zhen S, Nie H, Zhao Z, Tang BZ (2017) Synthesis and photophysical properties of new through-space conjugated luminogens constructed by folded tetraphenylethene. J Mater Chem C 5:12553. https://doi.org/10.1039/C7TC04626J. (PMID: 10.1039/C7TC04626J)
Lea MR, StavrosVG, Maurer RJ (2022) Effect of electron donating/withdrawing groups on molecular photoswitching of functionalized hemithioindigo derivatives: a computational multireference study. ChemPhotoChem 6:e202100290. https://doi.org/10.1002/cptc.202100290.
Finêncio BM, Santos FA, Laurentiz RS (2023) Synthesis of β-arylbutenolides mediated by BF 3 .OMe 2 . Synlett 34:77. https://doi.org/10.1055/s-0042-1753061.
Bhattacharyya A, Guchhait MSC, N, (2019) Photophysical properties of an azine-linked pyrene–cinnamaldehyde hybrid: evidence of solvent-dependent charge-transfer-coupled excimer emission. ACS Omega 4:2178. https://doi.org/10.1021/acsomega.8b02717. (PMID: 10.1021/acsomega.8b02717314594646648816)
Chen L, Fu PY, Wang HP, Pan M (2021) Excited-state intramolecular proton transfer (esipt) for optical sensing in solid state. Adv Opt Mater 9:2001952. https://doi.org/10.1002/adom.202001952. (PMID: 10.1002/adom.202001952)
Shen J, Lowe RD, Snook RD (1992) A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry. Chem Phys 165:385. https://doi.org/10.1016/0301-0104(92)87053-C. (PMID: 10.1016/0301-0104(92)87053-C)
Lima SM, Sampaio JA, Catunda T, Bento AC, Miranda LCM, Baesso ML (2000) Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review. J Non-Cryst Solids 273:215. https://doi.org/10.1016/S0022-3093(00)00169-1. (PMID: 10.1016/S0022-3093(00)00169-1)
Becke AD (1998) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098. https://doi.org/10.1103/PhysRevA.38.3098. (PMID: 10.1103/PhysRevA.38.3098)
Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785. https://doi.org/10.1103/PhysRevB.37.785. (PMID: 10.1103/PhysRevB.37.785)
Miehlich B, Savin A, Stoll H (1989) Preuss H Results obtained with the correlation energy density functionals of becke and Lee. Yang and Parr Chem Phys Lett 157:200. https://doi.org/10.1016/0009-2614(89)87234-3. (PMID: 10.1016/0009-2614(89)87234-3)
Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344. (PMID: 10.1063/1.338234420423165)
Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297. https://doi.org/10.1039/B508541A. (PMID: 10.1039/B508541A16240044)
Neese F (2003) An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. J Comput Chem 24:33051740. https://doi.org/10.1002/jcc.10318. (PMID: 10.1002/jcc.10318)
Neese F, Wennmohs F, Hansen A, Becker U (2009) Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree-Fock exchange. Chem Phys 356:98. https://doi.org/10.1016/j.chemphys.2008.10.036. (PMID: 10.1016/j.chemphys.2008.10.036)
Weigend F (2006) Accurate Coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8:1057. https://doi.org/10.1039/B515623H. (PMID: 10.1039/B515623H16633586)
Izsák R (2020) A local similarity transformed equation of motion approach for calculating excited states. Int J Quantum Chem 121:e26327. https://doi.org/10.1002/qua.26327. (PMID: 10.1002/qua.26327)
Berraud-Pache R, Neese F, Bistoni G, Izsak R (2020) Unveiling the photophysical properties of boron-dipyrromethene dyes using a new accurate excited state coupled cluster method. J Chem Theory Comput 16:564. https://doi.org/10.1021/acs.jctc.9b00559. (PMID: 10.1021/acs.jctc.9b0055931765141)
Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378. https://doi.org/10.1021/jp810292n. (PMID: 10.1021/jp810292n19366259)
Neese F (2012) The ORCA program system. WIREs Comput Mol Sci 2:73. https://doi.org/10.1002/wcms.81. (PMID: 10.1002/wcms.81)
Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999. (PMID: 10.1021/cr990400916092826)
Frisch MJ, Trucks GW, Schlegel HB., Scuseria GE., Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson, GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G., Lian W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa, J., Ishida, M, Nakajima T, Honda Y, Kitao O, NakaiH, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision C.01. Gaussian, Inc., Wallingford CT.
Shen Y, Chen P, Liu J, Ding J, Xue P (2018) Effects of electron donor on luminescence and mechanochromism of D-π-A benzothiazole derivatives. Dyes Pigm 150:354. https://doi.org/10.1016/j.dyepig.2017.12.034. (PMID: 10.1016/j.dyepig.2017.12.034)
Wang KY, Chen C, Liu JF, Wang Q, Chang J, Zhu HJ, Li C (2012) Novel multifunctional organic semiconductor materials based on 4,8-substituted 1,5-naphthyridine: synthesis, single crystal structures, opto-electrical properties and quantum chemistry calculation. Org Biomol Chem 10:6693–6704. https://doi.org/10.1039/C2OB25926E. (PMID: 10.1039/C2OB25926E22790292)
Zhang T, Han Y, Liang M, Bian W, Zhang Y, Li X, Zhang C, Xue P (2019) Substituent effect on photophysical properties, crystal structures and mechanochromism of D-π-A phenothiazine derivatives. Dyes Pigm 171:107692. https://doi.org/10.1016/j.dyepig.2019.107692. (PMID: 10.1016/j.dyepig.2019.107692)
Nigam S, Rutan S (2001) Principles and Applications of Solvatochromism. Appl Spectrosc 55:362A. https://doi.org/10.1366/0003702011953702. (PMID: 10.1366/0003702011953702)
Divya TT, Ramshad K, Saheer VC, Chakkumkumarath L (2018) Self-reversible mechanochromism and aggregation induced emission in neutral triarylmethanes and their application in water sensing. New J Chem 42:20227. https://doi.org/10.1039/c8nj04479a. (PMID: 10.1039/c8nj04479a)
Wie NN, Hao C, Xiu Z, Qiu J (2010) Time-dependent density functional theory study on the coexistent intermolecular hydrogen-bonding and dihydrogen-bonding of the phenol-H 2 O-diethylmethylsilane complex in electronic excited states. Phys Chem Chem Phys 12:9445. https://doi.org/10.1039/B927049C. (PMID: 10.1039/B927049C)
Zhao GJ, Liu JY, Zhou LC, Han KL (2007) Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new fluorescence quenching mechanism. J Phys Chem B 111:8940. https://doi.org/10.1021/jp0734530. (PMID: 10.1021/jp073453017616225)
Ghosh HN, Verma S, Nibbering ETJ (2011) Ultrafast forward and backward electron transfer dynamics of coumarin 337 in hydrogen-bonded anilines as studied with femtosecond UV-pump/IR-probe spectroscopy. J Phys Chem A 115:664. https://doi.org/10.1021/jp108090b. (PMID: 10.1021/jp108090b21192732)
Li Q, Li Z (2017) The strong light-emission materials in the aggregated state: what happens from a single molecule to the collective group. Adv Sci 4:1600484. https://doi.org/10.1002/advs.201600484. (PMID: 10.1002/advs.201600484)
Kumar P, Ghosh A, Jose DA (2021) Chemical sensors for water detection in organic solvents and their applications. Chem Sel 6:820. https://doi.org/10.1002/slct.202003920. (PMID: 10.1002/slct.202003920)
Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. 3rd Edition, Springer, Berlin. https://doi.org/10.1007/978-0-387-46312-4.
Algar WR, Massey M (2019) Key errors to avoid in the consideration of fluorescence quenching data. Spectrosc Suppl 34:12.
Sinha HK, Muralidharan S, Yate K (1992) Ground and excited state dipole moments of planar vs. twisted p-N, N-(dimethy1amino)benzonitrile systems: maximum charge transfer for minimum overlap. Can J Chem 70:1932. https://doi.org/10.1139/v92-24. (PMID: 10.1139/v92-24)
Morawski OW, Kielesiński Ł, Gryko DT, Sobolewski AL (2020) Highly polarized coumarin derivatives revisited: solvent-controlled competition between proton-coupled electron transfer and twisted intramolecular charge transfer. Chem Eur J 26:7140. https://doi.org/10.1002/chem.202001079. (PMID: 10.1002/chem.202001079)
Lopez Arbeloa T, Lopez Arbeloa F, Tapia MJ, Lopez Arbeloa I (1993) Hydrogen-bonding effect on the photophysical properties of 7-aminocoumarin derivatives. J Phys Chem 97:4704. https://doi.org/10.1021/j100120a024. (PMID: 10.1021/j100120a024)
Sobolewski AL, Domcke W (2007) Computational studies of the photophysics of hydrogen-bonded molecular systems. J Phys Chem A 111:11725. https://doi.org/10.1021/jp075803o. (PMID: 10.1021/jp075803o17941621)
Zhao GJ, Han KL (2009) Role of intramolecular and intermolecular hydrogen bonding in both singlet and triplet excited states of aminofluorenones on internal conversion, intersystem crossing, and twisted intramolecular charge transfer. J Phys Chem A 113:14329. https://doi.org/10.1021/jp903200x. (PMID: 10.1021/jp903200x19480423)
Kim JS, Choi MG, Huh Y, Kim SH, Wang SY, Chang SK (2006) Determination of water content in aprotic organic solvents using 8-hydroxyquinoline based fluorescent probe. Bull Korean Chem Soc 27:2058. https://doi.org/10.5012/bkcs.2006.27.12.2058. (PMID: 10.5012/bkcs.2006.27.12.2058)
Chen C, Fang C (2023) Fluorescence modulation by amines: mechanistic insights into twisted intramolecular charge transfer (TICT) and beyond. Chemosensors 11:87. https://doi.org/10.3390/chemosensors11020087. (PMID: 10.3390/chemosensors11020087)
Cai L, Sun X, He W, Hu R, Liu B, Shen J (2020) A solvatochromic AIE tetrahydro[5]helicene derivative as fluorescent probes for water in organic solvents and highly sensitive sensors for glyceryl monostearate. Talanta 206:120214. https://doi.org/10.1016/j.talanta.2019.120214. (PMID: 10.1016/j.talanta.2019.12021431514851)
Semin DJ, Malone TJ, Paley MT, Woods PW (2005) A novel approach to determine water content in DMSO for a compound collection repository. J Biomol Screen 10:568. https://doi.org/10.1177/1087057105276369. (PMID: 10.1177/108705710527636916103417)
Liu YC, Lu GD, Zhou JH, Rong JW, Liu HY, Wang HY (2022) Fluoranthene dyes for the detection of water content in methanol. RSC Adv 12:7405. https://doi.org/10.1039/D1RA08392A. (PMID: 10.1039/D1RA08392A354246678982283)
فهرسة مساهمة: Keywords: Butenolides; Fluorescence quantum yield; Fluorescence quenching; Solvatochromism
تواريخ الأحداث: Date Created: 20240109 Latest Revision: 20240109
رمز التحديث: 20240109
DOI: 10.1007/s10895-023-03546-z
PMID: 38193954
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-4994
DOI:10.1007/s10895-023-03546-z