دورية أكاديمية

Differential expression of ASIP transcripts reveals genetic mechanism underpinning black-tail independence from body plumage in yellow-bodied chickens.

التفاصيل البيبلوغرافية
العنوان: Differential expression of ASIP transcripts reveals genetic mechanism underpinning black-tail independence from body plumage in yellow-bodied chickens.
المؤلفون: Zheng X; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China., Chen J; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China., Nie R; State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China., Miao H; State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China., Chen Z; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China., He J; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China., Xie Y; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China., Zhang H; State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
المصدر: Animal genetics [Anim Genet] 2024 Apr; Vol. 55 (2), pp. 249-256. Date of Electronic Publication: 2024 Jan 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 8605704 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2052 (Electronic) Linking ISSN: 02689146 NLM ISO Abbreviation: Anim Genet Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford, England : Wiley-Blackwell
Original Publication: Oxford, England : Published by Blackwell Scientific Publications for the International Society for Animal Blood Group Research, c1986-
مواضيع طبية MeSH: Chickens*/genetics , Tail*, Animals ; Agouti Signaling Protein/genetics ; Feathers/physiology ; Gene Expression ; Pigmentation/genetics
مستخلص: The genetic foundation of chicken body plumage color has been extensively studied. However, little attention has been paid to the inheritance patterns and molecular mechanisms underlying the formation of distal feather colors (tail and wingtip). Differences in these colors are common; for example, the Chinese Huiyang Beard chicken has black tail feathers, but yellow body plumage. Here, the hybrid offspring of Huiyang Beard and White Leghorn chickens were used to study the inheritance patterns of tail-feather color. The expression levels of pigment genes in differently colored feather follicles were analyzed using quantitative real-time PCR. The results showed that genetic regulation of tail-feather color was independent of body-plumage color. The Dominant White locus inhibited eumelanin synthesis in tail feathers without affecting the formation of yellow body plumage, whereas the Silver locus had the opposite effect. The expression of agouti signaling protein (ASIP) gene class 1 transcripts was significantly lower in black tail-feather follicles than in yellow body follicles, whereas tyrosinase-related protein 1 (TYRP1) gene expression was significantly higher in black tail feathers. These differentially expressed genes were confirmed to exert an effect on eumelanin and pheomelanin formation in feathers, thus influencing the regulation of chicken tail-feather color. In conclusion, this study lays the foundation for further research on the genetic mechanisms of regional differences in feather color, contributing to a better understanding of plumage pigmentation in chickens.
(© 2024 Stichting International Foundation for Animal Genetics.)
References: Adelmann, C.H., Traunbauer, A.K., Chen, B., Condon, K.J., Chan, S.H., Kunchok, T. et al. (2020) MFSD12 mediates the import of cysteine into melanosomes and lysosomes. Nature, 588, 699-704. Available from: https://doi.org/10.1038/s41586-020-2937-x.
Cooke, T.F., Fischer, C.R., Wu, P., Jiang, T.X., Xie, K.T., Kuo, J. et al. (2017) Genetic mapping and biochemical basis of yellow feather pigmentation in budgerigars. Cell, 171, 427-439. Available from: https://doi.org/10.1016/j.cell.2017.08.016.
Domyan, E.T., Hardy, J., Wright, T., Frazer, C., Daniels, J., Kirkpatrick, J. et al. (2019) SOX10 regulates multiple genes to direct eumelanin versus pheomelanin production in domestic rock pigeon. Pigment Cell & Melanoma Research, 32, 634-642. Available from: https://doi.org/10.1111/pcmr.12778.
Drögemüller, C., Giese, A., Martins-Wess, F., Wiedemann, S., Andersson, L., Brenig, B. et al. (2006) The mutation causing the black-and-tan pigmentation phenotype of Mangalitza pigs maps to the porcine ASIP locus but does not affect its coding sequence. Mammalian Genome, 17, 58-66. Available from: https://doi.org/10.1007/s00335-005-0104-1.
Fontanesi, L., Forestier, L., Allain, D., Scotti, E., Beretti, F., Deretz-Picoulet, S. et al. (2010) Characterization of the rabbit agouti signaling protein (ASIP) gene: transcripts and phylogenetic analyses and identification of the causative mutation of the nonagouti black coat colour. Genomics, 95, 166-175. Available from: https://doi.org/10.1016/j.ygeno.2009.11.003.
Gunnarsson, U., Hellstrom, A.R., Tixier-Boichard, M., Minvielle, F., Bed'Hom, B., Ito, S. et al. (2007) Mutations in SLC45A2 cause plumage color variation in chicken and Japanese quail. Genetics, 175, 867-877. Available from: https://doi.org/10.1534/genetics.106.063107.
Gunnarsson, U., Kerje, S., Bed Hom, B., Sahlqvist, A., Ekwall, O., Tixier-Boichard, M. et al. (2011) The dark brown plumage color in chickens is caused by an 8.3-kb deletion upstream of SOX10. Pigment Cell & Melanoma Research, 24, 268-274. Available from: https://doi.org/10.1111/j.1755-148X.2011.00825.x.
Hellstrom, A.R., Sundstrom, E., Gunnarsson, U., Bed'Hom, B., Tixier-Boichard, M., Honaker, C.F. et al. (2010) Sex-linked barring in chickens is controlled by the CDKN2A /B tumour suppressor locus. Pigment Cell & Melanoma Research, 23, 521-530. Available from: https://doi.org/10.1111/j.1755-148X.2010.00700.x.
Hoashi, T., Watabe, H., Muller, J., Yamaguchi, Y., Vieira, W.D. & Hearing, V.J. (2005) MART-1 is required for the function of the melanosomal matrix protein PMEL17/GP100 and the maturation of melanosomes. Journal of Biological Chemistry, 280, 14006-14016. Available from: https://doi.org/10.1074/jbc.M413692200.
Hoekstra, H.E. (2006) Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity, 97, 222-234. Available from: https://doi.org/10.1038/sj.hdy.6800861.
Jia, L., Mao, Y., Ji, Q., Dersh, D., Yewdell, J.W. & Qian, S. (2020) Decoding mRNA translatability and stability from the 5′ UTR. Nature Structural & Molecular Biology, 27, 814-821. Available from: https://doi.org/10.1038/s41594-020-0465-x.
Kerje, S., Lind, J., Schutz, K., Jensen, P. & Andersson, L. (2003) Melanocortin 1-receptor (MC1R) mutations are associated with plumage colour in chicken. Animal Genetics, 34, 241-248. Available from: https://doi.org/10.1046/j.1365-2052.2003.00991.x.
Kerje, S., Sharma, P., Gunnarsson, U., Kim, H., Bagchi, S., Fredriksson, R. et al. (2004) The dominant white, dun and smoky color variants in chicken are associated with insertion/deletion polymorphisms in the PMEL17 gene. Genetics, 168, 1507-1518. Available from: https://doi.org/10.1534/genetics.104.027995.
Land, E.J. & Riley, P.A. (2000) Spontaneous redox reactions of dopaquinone and the balance between the eumelanic and phaeomelanic pathways. Pigment Cell Research, 13, 273-277. Available from: https://doi.org/10.1034/j.1600-0749.2000.130409.x.
Letko, A., Ammann, B., Jagannathan, V., Henkel, J., Leuthard, F., Schelling, C. et al. (2020) A deletion spanning the promoter and first exon of the hair cycle-specific ASIP transcript isoform in black and tan rabbits. Animal Genetics, 51, 137-140. Available from: https://doi.org/10.1111/age.12881.
Li, J., Bed'Hom, B., Marthey, S., Valade, M., Dureux, A., Moroldo, M. et al. (2019) A missense mutation in TYRP1 causes the chocolate plumage color in chicken and alters melanosome structure. Pigment Cell & Melanoma Research, 32, 381-390. Available from: https://doi.org/10.1111/pcmr.12753.
Liu, H., He, K., Ge, Y., Wan, Q. & Fang, S. (2021) Cape feather coloration signals different genotypes of the most polymorphic MHC locus in male Golden pheasants (Chrysolophus pictus). Animals, 11, 276. Available from: https://doi.org/10.3390/ani11020276.
Mochii, M., Mazaki, Y., Mizuno, N., Hayashi, H. & Eguchi, G. (1998) Role of Mitf in differentiation and transdifferentiation of chicken pigmented epithelial cell. Developmental Biology, 193, 47-62. Available from: https://doi.org/10.1006/dbio.1997.8800.
Nadeau, N.J., Minvielle, F., Ito, S., Inoue-Murayama, M., Gourichon, D., Follett, S.A. et al. (2008) Characterization of Japanese quail yellow as a genomic deletion upstream of the avian homolog of the mammalian ASIP (agouti) gene. Genetics, 178, 777-786. Available from: https://doi.org/10.1534/genetics.107.077073.
Nadeau, N.J., Mundy, N.I., Gourichon, D. & Minvielle, F. (2007) Association of a single-nucleotide substitution in TYRP1 with roux in Japanese quail (Coturnix japonica). Animal Genetics, 38, 609-613. Available from: https://doi.org/10.1111/j.1365-2052.2007.01667.x.
Nie, C., Qu, L., Li, X., Jiang, Z., Wang, K., Li, H. et al. (2021) Genomic regions related to white/black tail feather color in dwarf chickens identified using a genome-wide association study. Frontiers in Genetics, 12, 566047. Available from: https://doi.org/10.3389/fgene.2021.566047.
O'Reilly-Pol, T. & Johnson, S.L. (2013) Kit signaling is involved in melanocyte stem cell fate decisions in zebrafish embryos. Development, 140, 996-1002. Available from: https://doi.org/10.1242/dev.088112.
Oribe, E., Fukao, A., Yoshihara, C., Mendori, M., Rosal, K.G., Takahashi, S. et al. (2012) Conserved distal promoter of the agouti signaling protein (ASIP) gene controls sexual dichromatism in chickens. General and Comparative Endocrinology, 177, 231-237. Available from: https://doi.org/10.1016/j.ygcen.2012.04.016.
Sakai, C., Ollmann, M., Kobayashi, T., Abdel-Malek, Z., Muller, J., Vieira, W.D. et al. (1997) Modulation of murine melanocyte function in vitro by agouti signal protein. EMBO Journal, 16, 3544-3552. Available from: https://doi.org/10.1093/emboj/16.12.3544.
Schiaffino, M.V. (2010) Signaling pathways in melanosome biogenesis and pathology. The International Journal of Biochemistry & Cell Biology, 42, 1094-1104. Available from: https://doi.org/10.1016/j.biocel.2010.03.023.
Schmittgen, T.D. & Livak, K.J. (2008) Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101-1108. Available from: https://doi.org/10.1038/nprot.2008.73.
Schwochow, D., Bornelov, S., Jiang, T., Li, J., Gourichon, D., Bed'Hom, B. et al. (2021) The feather pattern autosomal barring in chicken is strongly associated with segregation at the MC1R locus. Pigment Cell & Melanoma Research, 34, 1015-1028. Available from: https://doi.org/10.1111/pcmr.12975.
Suzuki, I., Tada, A., Ollmann, M.M., Barsh, G.S., Im, S., Lamoreux, M.L. et al. (1997) Agouti signaling protein inhibits melanogenesis and the response of human melanocytes to alpha-melanotropin. Journal of Investigative Dermatology, 108, 838-842. Available from: https://doi.org/10.1111/1523-1747.ep12292572.
Tanaka, J., Leeb, T., Rushton, J., Famula, T.R., Mack, M., Jagannathan, V. et al. (2019) Frameshift variant in MFSD12 explains the mushroom coat color dilution in shetland ponies. Genes, 10, 826. Available from: https://doi.org/10.3390/genes10100826.
Utzeri, V.J., Ribani, A. & Fontanesi, L. (2014) A premature stop codon in the TYRP1 gene is associated with brown coat colour in the European rabbit (Oryctolagus cuniculus). Animal Genetics, 45, 600-603. Available from: https://doi.org/10.1111/age.12171.
Vrieling, H., Duhl, D.M., Millar, S.E., Miller, K.A. & Barsh, G.S. (1994) Differences in dorsal and ventral pigmentation result from regional expression of the mouse agouti gene. Proceedings of the National Academy of Sciences of the United States of America, 91, 5667-5671. Available from: https://doi.org/10.1073/pnas.91.12.5667.
Wang, K., Hu, H., Tian, Y., Li, J., Scheben, A., Zhang, C. et al. (2021) The chicken pan-genome reveals gene content variation and a promoter region deletion in IGF2BP1 affecting body size. Molecular Biology and Evolution, 38, 5066-5081. Available from: https://doi.org/10.1093/molbev/msab231.
Watt, B., van Niel, G., Raposo, G. & Marks, M.S. (2013) PMEL: a pigment cell-specific model for functional amyloid formation. Pigment Cell & Melanoma Research, 26, 300-315. Available from: https://doi.org/10.1111/pcmr.12067.
Yang, L., Du, X., Wei, S., Gu, L., Li, N., Gong, Y. et al. (2017) Genome-wide association analysis identifies potential regulatory genes for eumelanin pigmentation in chicken plumage. Animal Genetics, 48, 611-614. Available from: https://doi.org/10.1111/age.12573.
Yoshihara, C., Fukao, A., Ando, K., Tashiro, Y., Taniuchi, S., Takahashi, S. et al. (2012) Elaborate color patterns of individual chicken feathers may be formed by the agouti signaling protein. General and Comparative Endocrinology, 175, 495-499. Available from: https://doi.org/10.1016/j.ygcen.2011.12.009.
Zhang, H., Dou, S., He, F., Luo, J., Wei, L. & Lu, J. (2018) Genome-wide maps of ribosomal occupancy provide insights into adaptive evolution and regulatory roles of uORFs during Drosophila development. PLoS Biology, 16, e2003903. Available from: https://doi.org/10.1371/journal.pbio.2003903.
Zheng, X., Zhang, B., Zhang, Y., Zhong, H., Nie, R., Li, J. et al. (2020) Transcriptome analysis of feather follicles reveals candidate genes and pathways associated with pheomelanin pigmentation in chickens. Scientific Reports, 10, 12088. Available from: https://doi.org/10.1038/s41598-020-68931-1.
Zi, J., Yu, X., Li, Y., Hu, X., Xu, C., Wang, X. et al. (2003) Coloration strategies in peacock feathers. Proceedings of the National Academy of Sciences of the United States of America, 100, 12576-12578. Available from: https://doi.org/10.1073/pnas.2133313100.
معلومات مُعتمدة: CARS-40 China Agricultural Research System; BK20220648 Natural Science Foundation of Jiangsu Province
فهرسة مساهمة: Keywords: ASIP; feather follicle; inheritance pattern; melanin; tail-feather color
المشرفين على المادة: 0 (Agouti Signaling Protein)
تواريخ الأحداث: Date Created: 20240109 Date Completed: 20240305 Latest Revision: 20240305
رمز التحديث: 20240305
DOI: 10.1111/age.13395
PMID: 38194424
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2052
DOI:10.1111/age.13395