دورية أكاديمية

Nicotinamide employs a starvation strategy against Porphyromonas gingivalis virulence by inhibiting the heme uptake system and gingipain activities.

التفاصيل البيبلوغرافية
العنوان: Nicotinamide employs a starvation strategy against Porphyromonas gingivalis virulence by inhibiting the heme uptake system and gingipain activities.
المؤلفون: Lei Z; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China., Ma Q; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China., Tu Y; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China., Qiu Y; Department of Endodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, China., Gong T; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China., Lin Y; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China., Zhou X; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China., Li Y; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
المصدر: Molecular oral microbiology [Mol Oral Microbiol] 2024 Oct; Vol. 39 (5), pp. 321-333. Date of Electronic Publication: 2024 Jan 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: Denmark NLM ID: 101524770 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2041-1014 (Electronic) Linking ISSN: 20411006 NLM ISO Abbreviation: Mol Oral Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Copenhagen : John Wiley & Sons
مواضيع طبية MeSH: Porphyromonas gingivalis*/drug effects , Porphyromonas gingivalis*/pathogenicity , Porphyromonas gingivalis*/metabolism , Gingipain Cysteine Endopeptidases* , Niacinamide*/pharmacology , Heme*/metabolism , Adhesins, Bacterial*/metabolism , Adhesins, Bacterial*/drug effects , Periodontitis*/microbiology , Periodontitis*/prevention & control, Virulence/drug effects ; Animals ; Mice ; Hemolysis/drug effects ; Alveolar Bone Loss/prevention & control ; Alveolar Bone Loss/microbiology ; Disease Models, Animal ; Anti-Bacterial Agents/pharmacology ; Cysteine Endopeptidases/metabolism ; Hemagglutination/drug effects ; Bacteroidaceae Infections/microbiology ; Bacteroidaceae Infections/drug therapy ; Bacteroidaceae Infections/prevention & control ; Humans
مستخلص: Periodontitis is a common oral bacterial infection characterized by inflammatory responses. Its high prevalence lowers the quality of life for individuals and increases the global economic and disease burden. As microorganisms in dental plaque are responsible for this oral disease, antibacterial drug treatments are effective strategies for preventing and treating periodontitis. In this study, we investigated the inhibitory effect of nicotinamide (NAM), a vitamin B 3 derivative, on the growth and virulence of Porphyromonas gingivalis, a key member of the red complex. Our findings revealed that NAM inhibited bacterial growth and gingipain activities, which played a dominant role in protein hydrolysis and heme acquisition. NAM decreased hemagglutination and hemolysis abilities and changed hemin and hemoglobin binding capacities, controlling bacterial infection through a starvation strategy by blocking access to growth-essential nutrients from the outside and reducing bacterial virulence. Several experiments in an animal model showed the effectiveness of NAM in preventing alveolar bone loss and reducing inflammatory cell infiltration, shedding light on its potential therapeutic applicability.
(© 2024 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
References: An, T., Chen, Y., Li, M., Liu, Y., Zhang, Z., & Yang, Q. (2021). Inhibition of experimental periodontitis by a monoclonal antibody against Porphyromonas gingivalis HA2. Microbial Pathogenesis, 154, 104633. https://doi.org/10.1016/j.micpath.2020.104633.
Bhuyan, S., Yadav, M., Giri, S. J., Begum, S., Das, S., Phukan, A., Priyadarshani, P., Sarkar, S., Jayswal, A., Kabyashree, K., Kumar, A., Mandal, M., & Ray, S. K. (2023). Microliter spotting and micro‐colony observation: A rapid and simple approach for counting bacterial colony forming units. Journal of Microbiological Methods, 207, 106707. https://doi.org/10.1016/j.mimet.2023.106707.
Butler, C. A., Veith, P. D., Nieto, M. F., Dashper, S. G., & Reynolds, E. C. (2015). Lysine acetylation is a common post‐translational modification of key metabolic pathway enzymes of the anaerobe Porphyromonas gingivalis. Journal of Proteomics, 128, 352–364. https://doi.org/10.1016/j.jprot.2015.08.015.
Buxser, S. (2021). Has resistance to chlorhexidine increased among clinically‐relevant bacteria? A systematic review of time course and subpopulation data. PloS ONE, 16(8), e0256336. https://doi.org/10.1371/journal.pone.0256336.
Campbell, J. M. (2022). Supplementation with NAD+ and its precursors to prevent cognitive decline across disease contexts. Nutrients, 14(15), 3231. https://doi.org/10.3390/nu14153231.
Coats, S. R., Kantrong, N., To, T. T., Jain, S., Genco, C. A., McLean, J. S., & Darveau, R. P. (2019). The distinct immune‐stimulatory capacities of Porphyromonas gingivalis strains 381 and ATCC 33277 are determined by the fimB allele and gingipain activity. Infection and Immunity, 87(12), e00319–19. https://doi.org/10.1128/IAI.00319‐19.
Cobb, C. M., & Sottosanti, J. S. (2021). A re‐evaluation of scaling and root planing. Journal of Periodontology, 92(10), 1370–1378. https://doi.org/10.1002/JPER.20‐0839.
de Diego, I., Veillard, F., Sztukowska, M. N., Guevara, T., Potempa, B., Pomowski, A., Huntington, J. A., Potempa, J., & Gomis‐Rüth, F. X. (2014). Structure and mechanism of cysteine peptidase gingipain K (Kgp), a major virulence factor of Porphyromonas gingivalis in periodontitis. The Journal of Biological Chemistry, 289(46), 32291–32302. https://doi.org/10.1074/jbc.M114.602052.
Duarte, P. M., Tezolin, K. R., Figueiredo, L. C., Feres, M., & Bastos, M. F. (2010). Microbial profile of ligature‐induced periodontitis in rats. Archives of Oral Biology, 55(2), 142–147. https://doi.org/10.1016/j.archoralbio.2009.10.006.
Elashiry, M., Meghil, M. M., Arce, R. M., & Cutler, C. W. (2019). From manual periodontal probing to digital 3‐D imaging to endoscopic capillaroscopy: Recent advances in periodontal disease diagnosis. Journal of Periodontal Research, 54(1), 1–9. https://doi.org/10.1111/jre.12585.
El‐Kady, R. R., Ali, A. K., El Wakeel, L. M., Sabri, N. A., & Shawki, M. A. (2022). Nicotinamide supplementation in diabetic nonalcoholic fatty liver disease patients: Randomized controlled trial. Therapeutic Advances in Chronic Disease, 13, 204062232210779. https://doi.org/10.1177/20406223221077958.
Elvehjem, C. A., Madden, R. J., Strong, F. M., & Woolley, D. W. (1974). The isolation and identification of the anti‐black tongue factor. Nutrition Reviews, 32(2), 48–50. https://doi.org/10.1111/j.1753‐4887.1974.tb06263.x.
Frencken, J. E., Sharma, P., Stenhouse, L., Green, D., Laverty, D., & Dietrich, T. (2017). Global epidemiology of dental caries and severe periodontitis—A comprehensive review. Journal of Clinical Periodontology, 44(Suppl 18), S94–S105. https://doi.org/10.1111/jcpe.12677.
Gaffar, A., Afflitto, J., & Nabi, N. (1997). Chemical agents for the control of plaque and plaque microflora: An overview. European Journal of Oral Sciences, 105(5 Part 2), 502–507. https://doi.org/10.1111/j.1600‐0722.1997.tb00237.x.
Gallego‐Jara, J., Écija Conesa, A., de Diego Puente, T., Lozano Terol, G., & Cánovas Díaz, M. (2017). Characterization of CobB kinetics and inhibition by nicotinamide. PloS ONE, 12(12), e0189689. https://doi.org/10.1371/journal.pone.0189689.
Gao, Y., Zhang, P., Wei, Y., Ye, C., Mao, D., Xia, D., & Luo, Y. (2023). Porphyromonas gingivalis exacerbates alcoholic liver disease by altering gut microbiota composition and host immune response in mice. Journal of Clinical Periodontology, 50(9), 1253–1263. https://doi.org/10.1111/jcpe.13833.
Genco, C. A., Odusanya, B. M., & Brown, G. (1994). Binding and accumulation of hemin in Porphyromonas gingivalis are induced by hemin. Infection and Immunity, 62(7), 2885–2892. https://doi.org/10.1128/iai.62.7.2885‐2892.1994.
Genco, R. J., & Sanz, M. (2020). Clinical and public health implications of periodontal and systemic diseases: An overview. Periodontology 2000, 83(1), 7–13. https://doi.org/10.1111/prd.12344.
Glowczyk, I., Wong, A., Potempa, B., Babyak, O., Lech, M., Lamont, R. J., Potempa, J., & Koziel, J. (2017). Inactive gingipains from P. gingivalis selectively skews T cells toward a Th17 phenotype in an IL‐6 dependent manner. Frontiers in Cellular and Infection Microbiology, 7, 140. https://doi.org/10.3389/fcimb.2017.00140.
Hajishengallis, G. (2011). Immune evasion strategies of Porphyromonas gingivalis. Journal of Oral Biosciences, 53(3), 233–240. https://doi.org/10.2330/joralbiosci.53.233.
Hajishengallis, G., Darveau, R. P., & Curtis, M. A. (2012). The keystone‐pathogen hypothesis. Nature Reviews Microbiology, 10(10), 717–725. https://doi.org/10.1038/nrmicro2873.
Han, W., Jiao, Y., Mi, S., Han, S., Xu, J., Li, S., Liu, Y., & Guo, L. (2023). Stevioside reduces inflammation in periodontitis by changing the oral bacterial composition and inhibiting P. gingivalis in mice. BMC Oral Health, 23(1), 550. https://doi.org/10.1186/s12903‐023‐03229‐y.
He, Z., Zhang, X., Song, Z., Li, L., Chang, H., Li, S., & Zhou, W. (2020). Quercetin inhibits virulence properties of Porphyromonas gingivalis in periodontal disease. Scientific Reports, 10(1), 18313. https://doi.org/10.1038/s41598‐020‐74977‐y.
Hiratsuka, K., Kiyama‐Kishikawa, M., & Abiko, Y. (2010). Hemin‐binding protein 35 (HBP35) plays an important role in bacteria‐mammalian cells interactions in Porphyromonas gingivalis. Microbial Pathogenesis, 48(3–4), 116–123. https://doi.org/10.1016/j.micpath.2010.01.001.
How, K. Y., Song, K. P., & Chan, K. G. (2016). Porphyromonas gingivalis: An overview of periodontopathic pathogen below the gum line. Frontiers in Microbiology, 7, 53. https://doi.org/10.3389/fmicb.2016.00053.
Hwang, E. S., & Song, S. B. (2020). Possible adverse effects of high‐dose nicotinamide: Mechanisms and safety assessment. Biomolecules, 10(5), 687. https://doi.org/10.3390/biom10050687.
Jervøe‐Storm, P. M., Eberhard, J., Needleman, I., Worthington, H. V., & Jepsen, S. (2022). Full‐mouth treatment modalities (within 24 hours) for periodontitis in adults. The Cochrane Database of Systematic Reviews, 2022(6), CD004622. https://doi.org/10.1002/14651858.CD004622.pub4.
Jia, L., Han, N., Du, J., Guo, L., Luo, Z., & Liu, Y. (2019). Pathogenesis of important virulence factors of Porphyromonas gingivalis via toll‐like receptors. Frontiers in Cellular and Infection Microbiology, 9, 262. https://doi.org/10.3389/fcimb.2019.00262.
Jung, Y. J., Jun, H. K., & Choi, B. K. (2015). Contradictory roles of Porphyromonas gingivalis gingipains in caspase‐1 activation. Cellular Microbiology, 17(9), 1304–1319. https://doi.org/10.1111/cmi.12435.
Smalley, J. W., & Olczak, T. (2017). Heme acquisition mechanisms of Porphyromonas gingivalis—Strategies used in a polymicrobial community in a heme‐limited host environment. Molecular Oral Microbiology, 32(1), 1–23. https://doi.org/10.1111/omi.12149.
Kang, S., Dai, A., Wang, H., & Ding, P. H. (2022). Interaction between autophagy and Porphyromonas gingivalis‐induced inflammation. Frontiers in Cellular and Infection Microbiology, 12, 892610. https://doi.org/10.3389/fcimb.2022.892610.
Könönen, E., Gursoy, M., & Gursoy, U. K. (2019). Periodontitis: A multifaceted disease of tooth‐supporting tissues. Journal of Clinical Medicine, 8(8), 1135. https://doi.org/10.3390/jcm8081135.
Kumar, R., Mirza, M. A., Naseef, P. P., Kuruniyan, M. S., Zakir, F., & Aggarwal, G. (2022). Exploring the potential of natural product‐based nanomedicine for maintaining oral health. Molecules (Basel, Switzerland), 27(5), 1725. https://doi.org/10.3390/molecules27051725.
Kyme, P., Thoennissen, N. H., Tseng, C. W., Thoennissen, G. B., Wolf, A. J., Shimada, K., Krug, U. O., Lee, K., Müller‐Tidow, C., Berdel, W. E., Hardy, W. D., Gombart, A. F., Koeffler, H. P., & Liu, G. Y. (2012). C/EBPε mediates nicotinamide‐enhanced clearance of Staphylococcus aureus in mice. The Journal of Clinical Investigation, 122(9), 3316–3329. https://doi.org/10.1172/JCI62070.
LaPlante, K. L., Dhand, A., Wright, K., & Lauterio, M. (2022). Re‐establishing the utility of tetracycline‐class antibiotics for current challenges with antibiotic resistance. Annals of Medicine, 54(1), 1686–1700. https://doi.org/10.1080/07853890.2022.2085881.
Li, Y., Guo, R., Oduro, P. K., Sun, T., Chen, H., Yi, Y., Zeng, W., Wang, Q., Leng, L., Yang, L., & Zhang, J. (2022). The relationship between Porphyromonas gingivalis and rheumatoid arthritis: A meta‐analysis. Frontiers in Cellular and Infection Microbiology, 12, 956417. https://doi.org/10.3389/fcimb.2022.956417.
Lin, Y., Gong, T., Ma, Q., Jing, M., Zheng, T., Yan, J., Chen, J., Pan, Y., Sun, Q., Zhou, X., & Li, Y. (2022). Nicotinamide could reduce growth and cariogenic virulence of Streptococcus mutans. Journal of Oral Microbiology, 14(1), 2056291. https://doi.org/10.1080/20002297.2022.2056291.
Liu, X., Olczak, T., Guo, H. C., Dixon, D. W., & Genco, C. A. (2006). Identification of amino acid residues involved in heme binding and hemoprotein utilization in the Porphyromonas gingivalis heme receptor HmuR. Infection and Immunity, 74(2), 1222–1232. https://doi.org/10.1128/IAI.74.2.1222‐1232.2006.
Loos, B. G., & Van Dyke, T. E. (2020). The role of inflammation and genetics in periodontal disease. Periodontology 2000, 83(1), 26–39. https://doi.org/10.1111/prd.12297.
Lunar Silva, I., & Cascales, E. (2021). Molecular strategies underlying Porphyromonas gingivalis virulence. Journal of Molecular Biology, 433(7), 166836. https://doi.org/10.1016/j.jmb.2021.166836.
Ma, Q., Zhang, Q., Chen, Y., Yu, S., Huang, J., Liu, Y., Gong, T., Li, Y., & Zou, J. (2021). Post‐translational modifications in oral bacteria and their functional impact. Frontiers in Microbiology, 12, 784923. https://doi.org/10.3389/fmicb.2021.784923.
Matsuda, Y., Kato, T., Takahashi, N., Nakajima, M., Arimatsu, K., Minagawa, T., Sato, K., Ohno, H., & Yamazaki, K. (2016). Ligature‐induced periodontitis in mice induces elevated levels of circulating interleukin‐6 but shows only weak effects on adipose and liver tissues. Journal of Periodontal Research, 51(5), 639–646. https://doi.org/10.1111/jre.12344.
Merchant, A. T., Gupta, R. D., Akonde, M., Reynolds, M., Smith‐Warner, S., Liu, J., Tarannum, F., Beck, J., & Mattison, D. (2022). Association of chlorhexidine use and scaling and root planing with birth outcomes in pregnant individuals with periodontitis: A systematic review and meta‐analysis. JAMA Network Open, 5(12), e2247632. https://doi.org/10.1001/jamanetworkopen.2022.47632.
Mishra, A., Roy, F., Dou, Y., Zhang, K., Tang, H., & Fletcher, H. M. (2018). Role of acetyltransferase PG1842 in gingipain biogenesis in Porphyromonas gingivalis. Journal of Bacteriology, 200(24), e00385–18. https://doi.org/10.1128/JB.00385‐18.
Nagasaki, A., Sakamoto, S., Arai, T., Kato, M., Ishida, E., Furusho, H., Fujii, M., Takata, T., & Miyauchi, M. (2021). Elimination of Porphyromonas gingivalis inhibits liver fibrosis and inflammation in NASH. Journal of Clinical Periodontology, 48(10), 1367–1378. https://doi.org/10.1111/jcpe.13523.
Nakayama, M., Naito, M., Omori, K., Ono, S., Nakayama, K., & Ohara, N. (2022). Porphyromonas gingivalis gingipains induce cyclooxygenase‐2 expression and prostaglandin E2 production via ERK1/2‐activated AP‐1 (c‐Jun/c‐Fos) and IKK/NF‐κB p65 cascades. Journal of Immunology (Baltimore, Md.: 1950), 208(5), 1146–1154. https://doi.org/10.4049/jimmunol.2100866.
Nordahl, E. A., Rydengård, V., Nyberg, P., Nitsche, D. P., Mörgelin, M., Malmsten, M., Björck, L., & Schmidtchen, A. (2004). Activation of the complement system generates antibacterial peptides. Proceedings of the National Academy of Sciences of the United States of America, 101(48), 16879–16884. https://doi.org/10.1073/pnas.0406678101.
Pamer, E., & Cresswell, P. (1998). Mechanisms of MHC class I–restricted antigen processing. Annual Review of Immunology, 16, 323–358. https://doi.org/10.1146/annurev.immunol.16.1.323.
Park, K. H., Kim, D. K., Huh, Y. H., Lee, G., Lee, S. H., Hong, Y., Kim, S. H., Kook, M. S., Koh, J. T., Chun, J. S., Lee, S. E., & Ryu, J. H. (2017). NAMPT enzyme activity regulates catabolic gene expression in gingival fibroblasts during periodontitis. Experimental & Molecular Medicine, 49(8), e368. https://doi.org/10.1038/emm.2017.116.
Peng, X., Cheng, L., You, Y., Tang, C., Ren, B., Li, Y., Xu, X., & Zhou, X. (2022). Oral microbiota in human systematic diseases. International Journal of Oral Science, 14(1), 14. https://doi.org/10.1038/s41368‐022‐00163‐7.
Peres, M. A., Macpherson, L. M. D., Weyant, R. J., Daly, B., Venturelli, R., Mathur, M. R., Listl, S., Celeste, R. K., Guarnizo‐Herreño, C. C., Kearns, C., Benzian, H., Allison, P., & Watt, R. G. (2019). Oral diseases: A global public health challenge. Lancet (London, England), 394(10194), 249–260. https://doi.org/10.1016/S0140‐6736(19)31146‐8.
Ren, J., Han, X., Lohner, H., Hoyle, R. G., Li, J., Liang, S., & Wang, H. (2023). P. gingivalis infection upregulates PD‐L1 expression on dendritic cells, suppresses CD8+ T‐cell responses, and aggravates oral cancer. Cancer Immunology Research, 11(3), 290–305. https://doi.org/10.1158/2326‐6066.CIR‐22‐0541.
Reyes, L. (2021). Porphyromonas gingivalis. Trends in Microbiology, 29(4), 376–377. https://doi.org/10.1016/j.tim.2021.01.010.
Rojas, C., García, M. P., Polanco, A. F., González‐Osuna, L., Sierra‐Cristancho, A., Melgar‐Rodríguez, S., Cafferata, E. A., & Vernal, R. (2021). Humanized mouse models for the study of periodontitis: An opportunity to elucidate unresolved aspects of its immunopathogenesis and analyze new immunotherapeutic strategies. Frontiers in Immunology, 12, 663328. https://doi.org/10.3389/fimmu.2021.663328.
Shih, Y. H., Liu, D., Chen, Y. C., Liao, M. H., Lee, W. R., & Shen, S. C. (2021). Activation of deoxyribonuclease I by nicotinamide as a new strategy to attenuate tetracycline‐resistant biofilms of Cutibacterium acnes. Pharmaceutics, 13(6), 819. https://doi.org/10.3390/pharmaceutics13060819.
Smalley, J. W., Byrne, D. P., Birss, A. J., Wojtowicz, H., Sroka, A., Potempa, J., & Olczak, T. (2011). HmuY haemophore and gingipain proteases constitute a unique syntrophic system of haem acquisition by Porphyromonas gingivalis. PloS ONE, 6(2), e17182. https://doi.org/10.1371/journal.pone.0017182.
Śmiga, M., Ślęzak, P., Wagner, M., & Olczak, T. (2023). Interplay between Porphyromonas gingivalis hemophore‐like protein hmuY and Kgp/RgpA gingipains plays a superior role in heme supply. Microbiology Spectrum, 11(2), e0459322. Advance online publication. https://doi.org/10.1128/spectrum.04593‐22.
Szulc, M., Zakrzewska, A., & Zborowski, J. (2018). Local drug delivery in periodontitis treatment: A review of contemporary literature. Dental and Medical Problems, 55(3), 333–342. https://doi.org/10.17219/dmp/94890.
Veillard, F., Sztukowska, M., Nowakowska, Z., Mizgalska, D., Thøgersen, I. B., Enghild, J. J., Bogyo, M., Potempa, B., Nguyen, K. A., & Potempa, J. (2019). Proteolytic processing and activation of gingipain zymogens secreted by T9SS of Porphyromonas gingivalis. Biochimie, 166, 161–172. https://doi.org/10.1016/j.biochi.2019.06.010.
Wang, J. D., & Levin, P. A. (2009). Metabolism, cell growth and the bacterial cell cycle. Nature Reviews Microbiology, 7(11), 822–827. https://doi.org/10.1038/nrmicro2202.
Wang, L., Liang, D., Huang, Y., Chen, Y., Yang, X., Huang, Z., Jiang, Y., Su, H., Wang, L., Pathak, J. L., & Ge, L. (2023). SAP deficiency aggravates periodontitis possibly via C5a‐C5aR signaling‐mediated defective macrophage phagocytosis of Porphyromonas gingivalis. Journal of Advanced Research, 50, 55–68. https://doi.org/10.1016/j.jare.2022.10.003.
Wilensky, A., Tzach‐Nahman, R., Potempa, J., Shapira, L., & Nussbaum, G. (2015). Porphyromonas gingivalis gingipains selectively reduce CD14 expression, leading to macrophage hyporesponsiveness to bacterial infection. Journal of Innate Immunity, 7(2), 127–135. https://doi.org/10.1159/000365970.
Wingrove, J. A., DiScipio, R. G., Chen, Z., Potempa, J., Travis, J., & Hugli, T. E. (1992). Activation of complement components C3 and C5 by a cysteine proteinase (gingipain‐1) from Porphyromonas (Bacteroides) gingivalis. The Journal of Biological Chemistry, 267(26), 18902–18907. https://doi.org/10.1016/S0021‐9258(19)37046‐2.
Wójtowicz, H., Guevara, T., Tallant, C., Olczak, M., Sroka, A., Potempa, J., Solà, M., Olczak, T., & Gomis‐Rüth, F. X. (2009). Unique structure and stability of hmuy, a novel heme‐binding protein of Porphyromonas gingivalis. PLoS Pathogens, 5(5), e1000419. https://doi.org/10.1371/journal.ppat.1000419.
Ximinies, A. D., Dou, Y., Mishra, A., Zhang, K., Deivanayagam, C., Wang, C., & Fletcher, H. M. (2023). The oxidative stress‐induced hypothetical protein PG_0686 in Porphyromonas gingivalis W83 is a novel diguanylate cyclase. Microbiology Spectrum, 11(2), e0441122. Advance online publication. https://doi.org/10.1128/spectrum.04411‐22.
Yoshida, K., Yoshida, K., Seyama, M., Hiroshima, Y., Mekata, M., Fujiwara, N., Kudo, Y., & Ozaki, K. (2022). Porphyromonas gingivalis outer membrane vesicles in cerebral ventricles activate microglia in mice. Oral Diseases, 29, 3688–3697. Advance online publication. https://doi.org/10.1111/odi.14413.
Zeng, J., Wu, L., Chen, Q., Wang, L., Qiu, W., Zheng, X., Yin, X., Liu, J., Ren, Y., & Li, Y. (2020). Comprehensive profiling of protein lysine acetylation and its overlap with lysine succinylation in the Porphyromonas gingivalis fimbriated strain ATCC 33277. Molecular Oral Microbiology, 35(6), 240–250. https://doi.org/10.1111/omi.12312.
Zhang, H., Yuan, Y., Xue, H., Yu, R., & Huang, H. (2022). MicroRNA sequence and function analysis in peri‐implantitis and periodontitis: An animal study. Journal of Periodontal Research, 57(5), 1043–1055. https://doi.org/10.1111/jre.13045.
Zhang, Z., Liu, D., Liu, S., Zhang, S., & Pan, Y. (2021). The role of Porphyromonas gingivalis outer membrane vesicles in periodontal disease and related systemic diseases. Frontiers in Cellular and Infection Microbiology, 10, 585917. https://doi.org/10.3389/fcimb.2020.585917.
Zheng, M., & Guo, J. (2020). Nicotinamide‐induced silencing of SIRT1 by miR‐22‐3p increases periodontal ligament stem cell proliferation and differentiation. Cell Biology International, 44(3), 764–772. https://doi.org/10.1002/cbin.11271.
معلومات مُعتمدة: 32170046 National Natural Science Foundation of China; 81991500 National Natural Science Foundation of China; 81991501 National Natural Science Foundation of China; 2022YFH0048 the Sichuan Science and Technology Program; ISTC202208 National Base for International Science and Technology Cooperation of Chengdu University
فهرسة مساهمة: Keywords: Porphyromonas gingivalis; chlorhexidine; gingipain; heme; nicotinamide; periodontitis
المشرفين على المادة: 0 (Gingipain Cysteine Endopeptidases)
25X51I8RD4 (Niacinamide)
42VZT0U6YR (Heme)
0 (Adhesins, Bacterial)
0 (Anti-Bacterial Agents)
EC 3.4.22.- (Cysteine Endopeptidases)
تواريخ الأحداث: Date Created: 20240110 Date Completed: 20240902 Latest Revision: 20240902
رمز التحديث: 20240902
DOI: 10.1111/omi.12448
PMID: 38197801
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1014
DOI:10.1111/omi.12448