دورية أكاديمية

Phytochemical composition of aerial parts and roots of Pfaffia glomerata (Spreng.) Pedersen and anticholinesterase, antioxidant, and antiglycation activities.

التفاصيل البيبلوغرافية
العنوان: Phytochemical composition of aerial parts and roots of Pfaffia glomerata (Spreng.) Pedersen and anticholinesterase, antioxidant, and antiglycation activities.
المؤلفون: Franco RR; Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil.; Departamento de Medicina, Instituto de Biotecnologia, Universidade Federal de Catalão, Catalão, GO, 75706-881, Brazil., Franco RM; Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil., Justino AB; Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil., Borges ALS; Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil., Bittar VP; Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil., Saito N; Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil., Saraiva AL; Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil., Júnior NN; Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil., Otoni WC; Departamento de Biologia Vegetal, Laboratório de Cultura de Tecidos/BIOAGRO, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil., Espindola FS; Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, S/N, Bloco 2E/237, Uberlândia, MG, CEP 38405-319, 38408-100, Brazil. foued@ufu.br.
المصدر: Protoplasma [Protoplasma] 2024 Jul; Vol. 261 (4), pp. 609-624. Date of Electronic Publication: 2024 Jan 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Austria NLM ID: 9806853 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-6102 (Electronic) Linking ISSN: 0033183X NLM ISO Abbreviation: Protoplasma Subsets: MEDLINE
أسماء مطبوعة: Publication: <1998->: Wien ; New York : Springer
Original Publication: Leipzig : Verlag von Gebrüder Borntraeger, 1927-
مواضيع طبية MeSH: Antioxidants*/pharmacology , Antioxidants*/chemistry , Plant Roots*/chemistry , Cholinesterase Inhibitors*/pharmacology , Cholinesterase Inhibitors*/chemistry , Phytochemicals*/pharmacology , Phytochemicals*/chemistry , Plant Components, Aerial*/chemistry , Plant Extracts*/pharmacology , Plant Extracts*/chemistry, Humans
مستخلص: The Pfaffia glomerata, a plant popularly called Brazilian ginseng, is widely used in Brazil for the treatment of various pathologies, including those associated with the Central Nervous System. 20-hydroxyecdysone (20E), a phytosteroid present in this plant, can promote adaptogenic effects in the organism, providing greater body resistance to stressors. This study aimed to evaluate the phytochemical composition and the anticholinesterase, antioxidant, and antiglycation effects of extracts and fractions of aerial parts and roots of P. glomerata, also analyzing their possible cytotoxic effects. The fractions were obtained by partitioning methanol extracts from the aerial part and roots of P. glomerata with hexane, dichloromethane, ethyl acetate, n-butanol, and water. The samples were initially tested in anticholinesterase, antioxidant, and antiglycation assays, and the most promising samples were submitted for cytotoxicity and chromatographic analyses. Mass spectrometry and chromatography methods revealed that 20E was the main compound in the dichloromethane fractions, there being 35% more 20E in the aerial part (APD) than in the roots (RD). Added to the higher concentration of 20E, the APD fraction also presented more promising results than the RD fraction in anticholinesterase and antioxidant analyses, indicating that their effects may be related to the concentration of 20E. These same fractions showed no hemolytic effects but were cytotoxic in high concentrations. These new findings contribute to scientific information about P. glomerata and open more perspectives for the understanding of its therapeutic properties, allowing the association of biological activity with the presence of 20E.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
References: Almeida I, Düsman E, Mattge G, Toledo F, Reusing A and Vicentini V (2017) In vivo antimutagenic activity of the medicinal plants Pfaffia glomerata (Brazilian ginseng) and Ginkgo biloba. Genetics and molecular research 16. https://doi.org/10.4238/gmr16039785.
Alzobaidi N, Quasimi H, Emad NA, Alhalmi A, Naqvi N (2021) Bioactive compounds and traditional herbal medicine: promising approaches for the treatment of dementia. Degener Neurol Neuromuscul Dis 11:1. https://doi.org/10.2147/DNND.S299589. (PMID: 10.2147/DNND.S299589338800738051957)
Ambrosio G, Wirth D, Joseph JF, Mazzarino M, de la Torre X, Botrè F, Parr MK (2020) How reliable is dietary supplement labelling?—experiences from the analysis of ecdysterone supplements. J Pharm Biomed Anal 177:112877. https://doi.org/10.1016/j.jpba.2019.112877. (PMID: 10.1016/j.jpba.2019.11287731568967)
Asmat U, Abad K, Ismail KJ (2016) Diabetes mellitus and oxidative stress—a concise review. Saudi Pharm J 24:547–553. https://doi.org/10.1016/j.jsps.2015.03.013. (PMID: 10.1016/j.jsps.2015.03.01327752226)
Bhat SV, Nagasampagi BA and Sivakumar M (2005) Chemistry of natural products. Springer Science & Business Media.
Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820. https://doi.org/10.1038/414813a. (PMID: 10.1038/414813a11742414)
Carlini EA (2003) Plants and the central nervous system. Pharmacol Biochem Behav 75:501–512. https://doi.org/10.1016/S0091-3057(03)00112-6. (PMID: 10.1016/S0091-3057(03)00112-612895668)
De Lima Júnior JP, Franco RR, Saraiva AL, Moraes IB, Espindola FS (2021) Anacardium humile St Hil as a novel source of antioxidant, antiglycation and α-amylase inhibitors molecules with potential for management of oxidative stress and diabetes. J Ethnopharmacol 268:113667. https://doi.org/10.1016/j.jep.2020.113667. (PMID: 10.1016/j.jep.2020.11366733301920)
De Melo Martins N, Andrich F, Martins DA, Calaça GN and Sakai OA (2020) Determination of β-ecdysone in infusions of different organs of Brazilian ginseng (Pfaffia glomerata) by high-performance liquid chromatography. Revista Mundi Engenharia, Tecnologia e Gestão (ISSN: 2525–4782), 5. https://doi.org/10.21575/25254782rmetg2020vol5n71138.
Delagarza VW (2003) Pharmacologic treatment of Alzheimer’s disease: an update. Am Fam Physician 68:1365–1372. (PMID: 14567491)
Delalio LJ, Dion SM, Bootes AM, Smith WA (2015) Direct effects of hypoxia and nitric oxide on ecdysone secretion by insect prothoracic glands. J Insect Physiol 76:56–66. https://doi.org/10.1016/j.jinsphys.2015.02.009. (PMID: 10.1016/j.jinsphys.2015.02.00925747870)
De-Paris F, Never G, Salgueiro J, Quevedo J, Izquierdo I, Rates SM (2000) Psychopharmacological screening of Pfaffia glomerata Spreng. (Amarathanceae) in rodents. J Ethnopharmacol 73(1–2):261–269. (PMID: 10.1016/S0378-8741(00)00329-911025164)
Dias FCR, Martins ALP, De Melo FCSA, do Carmo Cupertino M, Gomes MLM, De Oliveira JM, Damasceno EM, Silva J, Otoni WC and da Matta SLP (2019) Hydroalcoholic extract of Pfaffia glomerata alters the organization of the seminiferous tubules by modulating the oxidative state and the microstructural reorganization of the mice testes. J Ethnopharmacol 233: 179-189. https://doi.org/10.1016/j.jep.2018.12.047.
Dinan L, Dioh W, Veillet S, Lafont R (2021) 20-Hydroxyecdysone, from plant extracts to clinical use: therapeutic potential for the treatment of neuromuscular, cardio-metabolic and respiratory diseases. Biomedicines 9:492. https://doi.org/10.3390/biomedicines9050492. (PMID: 10.3390/biomedicines9050492339470768146789)
Dobrek L (2019) The outline of stress pathophysiology and pharmacodynamic action of plant-based eustressors-adaptogens. Pol Merkur Lekarski 46:103. (PMID: 30912517)
Džoljić E, Grabatinić I and Kostić V (2015) Why is nitric oxide important for our brain? Funct Neurol 30: 159. https://doi.org/10.11138/FNeur/2015.30.3.159.
Felipe DF, Brambilla LZS, Porto C, Pilau EJ, Cortez DAG (2014) Phytochemical analysis of Pfaffia glomerata inflorescences by LC-ESI-MS/MS. Molecules 19:15720–15734. https://doi.org/10.3390/molecules191015720. (PMID: 10.3390/molecules191015720252687236270899)
Fenner R, Zimmer AR, Neves G, Kliemann M, Gosmann G, Rates SMK (2008) Hypnotic effect of ecdysterone isolated from Pfaffia glomerata (Spreng.) Pedersen. Revista Brasileira de Farmacognosia 18(2):170–176. https://doi.org/10.1590/S0102-695X2008000200005. (PMID: 10.1590/S0102-695X2008000200005)
Franco RR, da Silva CD, de Moura FBR, Justino AB, Silva HCG, Peixoto LG, Espindola FS (2018) Antioxidant and anti-glycation capacities of some medicinal plants and their potential inhibitory against digestive enzymes related to type 2 diabetes mellitus. J Ethnopharmacol 215:140–146. https://doi.org/10.1016/j.jep.2017.12.032. (PMID: 10.1016/j.jep.2017.12.03229274842)
Franco RR, Alves VHM, Zabisky LFR, Justino AB, Martins MM, Saraiva AL, Goulart LR, Espindola FS (2020a) Antidiabetic potential of Bauhinia forficata Link leaves: a non-cytotoxic source of lipase and glycoside hydrolases inhibitors and molecules with antioxidant and antiglycation properties. Biomed Pharmacother 123:109798. https://doi.org/10.1016/j.biopha.2019.109798. (PMID: 10.1016/j.biopha.2019.10979831877553)
Franco RR, de Almeida Takata L, Chagas K, Justino AB, Saraiva AL, Goulart LR, Ávila VdMR, Otoni WC, Espindola FS, da Silva CR (2021) A 20-hydroxyecdysone-enriched fraction from Pfaffia glomerata (Spreng.) pedersen roots alleviates stress, anxiety, and depression in mice. J Ethnopharmacol 267:113599. https://doi.org/10.1016/j.jep.2020.113599. (PMID: 10.1016/j.jep.2020.11359933220360)
Franco RR, Justino AB, Martins MM, Silva CG, Campana PRV, Lopes JCD, De Almeida VL and Espindola FS (2019) Phytoscreening of Vochysiaceae species: molecular identification by HPLC-ESI-MS/MS and evaluating of their antioxidant activity and inhibitory potential against human α-amylase and protein glycation. Bioorg Chem 103122. https://doi.org/10.1016/j.bioorg.2019.103122.
Franco RR, Zabisky LFR, de Lima Júnior JP, Alves VHM, Justino AB, Saraiva AL, Goulart LR and Espindola FS (2020b) Antidiabetic effects of Syzygium cumini leaves: a non-hemolytic plant with potential against process of oxidation, glycation, inflammation and digestive enzymes catalysis. J Ethnopharmacol 113132. https://doi.org/10.1016/j.jep.2020.113132.
Granger DL, Taintor RR, Boockvar KS, Hibbs JB Jr (1996) Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods in Enzymology Academic Press 268:142–151. https://doi.org/10.1016/S0076-6879(96)68016-1. (PMID: 10.1016/S0076-6879(96)68016-1)
Hammes H-P, Du X, Edelstein D, Taguchi T, Matsumura T, Ju Q, Lin J, Bierhaus A, Nawroth P, Hannak D (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9:294–299. https://doi.org/10.1038/nm834. (PMID: 10.1038/nm83412592403)
Hossain MB, Rai DK, Brunton NP, Martin-Diana AB, Barry-Ryan C (2010) Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS. J Agric Food Chem 58:10576–10581. https://doi.org/10.1021/jf102042g. (PMID: 10.1021/jf102042g20825192)
Hu J, Luo CX, Chu WH, Shan YA, Qian Z-M, Zhu G, Yu YB, Feng H (2012) 20-Hydroxyecdysone protects against oxidative stress-induced neuronal injury by scavenging free radicals and modulating NF-κB and JNK pathways. PLoS ONE 7:e50764. https://doi.org/10.1371/journal.pone.0050764. (PMID: 10.1371/journal.pone.0050764232399833519785)
Hunyadi A, Herke I, Lengyel K, Báthori M, Kele Z, Simon A, Tóth G, Szendrei K (2016) Ecdysteroid-containing food supplements from Cyanotis arachnoidea on the European market: evidence for spinach product counterfeiting. Sci Rep 6:37322. https://doi.org/10.1038/srep37322. (PMID: 10.1038/srep37322279290325144001)
Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. https://doi.org/10.1006/jmbi.1996.0897. (PMID: 10.1006/jmbi.1996.08979126849)
Justice NJ (2018) The relationship between stress and Alzheimer’s disease. Neurobiology of stress, 8: 127–133. Neurobiology Stress 8:127–133. https://doi.org/10.1016/j.ynstr.2018.04.002. (PMID: 10.1016/j.ynstr.2018.04.002)
Kaur P, Makanjuola VO, Arora R, Singh B, Arora S (2017) Immunopotentiating significance of conventionally used plant adaptogens as modulators in biochemical and molecular signalling pathways in cell mediated processes. Biomed Pharmacother 95:1815–1829. https://doi.org/10.1016/j.biopha.2017.09.081. (PMID: 10.1016/j.biopha.2017.09.08128968926)
Khan Z, Ali SA (2018) Oxidative stress-related biomarkers in Parkinson’s disease: a systematic review and meta-analysis. Iranian J Neurol 17:137. https://doi.org/10.18502/ijnl.v17i3.373. (PMID: 10.18502/ijnl.v17i3.373)
Kösem A, Yücel Ç, Titiz AP, Sezer S, Neşelioğlu S, Erel Ö, Turhan T (2020) Evaluation of serum thiol-disulphide homeostasis parameters as oxidative stress markers in epilepsy patients. Acta Neurol Belg 120:1–5. https://doi.org/10.1007/s13760-020-01410-6. (PMID: 10.1007/s13760-020-01410-6)
Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. ACS Publications. https://doi.org/10.1021/ci200227u. (PMID: 10.1021/ci200227u)
Lavrynenko O, Nedielkov R, Möller HM, Shevchenko A (2013) Girard derivatization for LC-MS/MS profiling of endogenous ecdysteroids in Drosophila. J Lipid Res 54:2265–2272. https://doi.org/10.1194/jlr.D035949. (PMID: 10.1194/jlr.D035949238433603708376)
Lee JP, Kang M-G, Lee JY, Oh JM, Baek SC, Leem HH, Park D, Cho M-L, Kim H (2019) Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds. Bioorg Chem 89:103043. https://doi.org/10.1016/j.bioorg.2019.103043. (PMID: 10.1016/j.bioorg.2019.10304331200287)
Li J, Jadhav AN, Khan IA (2010) Triterpenoids from Brazilian ginseng, Pfaffia paniculata. Planta Med 76:635–639. https://doi.org/10.1055/s-0029-1240631. (PMID: 10.1055/s-0029-124063119941264)
Liang N, Kitts DD (2014) Antioxidant property of coffee components: assessment of methods that define mechanisms of action. Molecules 19:19180–19208. https://doi.org/10.3390/molecules191119180. (PMID: 10.3390/molecules191119180254154796270823)
Luthra R, Roy A (2021) Role of medicinal plants against neurodegenerative diseases. Curr Pharm Biotechnol 23(123–139):2022. https://doi.org/10.2174/1389201022666210211123539. (PMID: 10.2174/1389201022666210211123539)
Mamadalieva NZ, Böhmdorfer S, Zengin G, Bacher M, Potthast A, Akramov DK, Janibekov A, Rosenau T (2019) Phytochemical and biological activities of Silene viridiflora extractives. Development and validation of a HPTLC method for quantification of 20-hydroxyecdysone. Ind Crops Prod 129:542–548. https://doi.org/10.1016/j.indcrop.2018.12.041. (PMID: 10.1016/j.indcrop.2018.12.041)
Marques LC (1998) Avaliação da ação adaptógena das raízes de Pfaffia glomerata (Sprengel) Pedersen-Amaranthaceae. Universidade Federal de Sao Paulo, Escola Paulista de Medicina, Sao Paulo.
Martorell M, Lucas X, Alarcón-Zapata P, Capó X, Quetglas-Llabrés MM, Tejada S, Sureda A (2021) Targeting xanthine oxidase by natural products as a therapeutic approach for mental disorders. Curr Pharm Des 27:367–382. https://doi.org/10.2174/1381612826666200621165839. (PMID: 10.2174/138161282666620062116583932564744)
Moawad A, Abuzaid H, Arafa WM, Ahmed O, Hetta M, Mohammed R (2020) Anticholinesterase and acaricidal activities of steroids isolated from Trianthema portulacastrum L. against Rhipicephalus annulatus tick. J Appl Pharm Sci 10:047–055. https://doi.org/10.7324/JAPS.2020.104008. (PMID: 10.7324/JAPS.2020.104008)
Nejma AB, Nguir A, Jannet HB, Daïch A, Othman M, Lawson AM (2015) New septanoside and 20-hydroxyecdysone septanoside derivative from Atriplex portulacoides roots with preliminary biological activities. Bioorg Med Chem Lett 25:1665–1670. https://doi.org/10.1016/j.bmcl.2015.03.028. (PMID: 10.1016/j.bmcl.2015.03.02825813159)
Ogawa S, Nishimoto N and Matsuda H (1974) Pharmacology of ecdysones in vertebrates. In Invertebrate endocrinology and hormonal heterophylly. Springer 341–344. https://doi.org/10.1007/978-3-642-65769-6&#95;27.
Picón-Pagès P, Garcia-Buendia J, Muñoz FJ (2019) Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta Mol Basis Dis 1865:1949–1967. https://doi.org/10.1016/j.bbadis.2018.11.007. (PMID: 10.1016/j.bbadis.2018.11.00730500433)
Pires DE, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58:4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104. (PMID: 10.1021/acs.jmedchem.5b00104258608344434528)
Rates SMK, Gosmann G (2002) Gênero Pfaffia: aspectos químicos, farmacológicos e implicações para o seu emprego terapêutico. Rev Bras 12:85–93. https://doi.org/10.1590/S0102-695X2002000200005. (PMID: 10.1590/S0102-695X2002000200005)
Sadílek J, Spálovská P, Vrana B, Vávrová M, Maršálek B, Šimek Z (2016) Comparison of extraction techniques for isolation of steroid oestrogens in environmentally relevant concentrations from sediment. Int J Environ Anal Chem 96:1022–1037. https://doi.org/10.1080/03067319.2016.1232718. (PMID: 10.1080/03067319.2016.1232718)
Santos EW, de OLIVEIRA DC, Hastreiter A, da SILVA GB, de Oliveira Beltran JS, Tsujita M, Crisma AR, Neves SMP, Fock RA, Borelli P (2016) Hematological and biochemical reference values for C57BL/6, Swiss Webster and BALB/c mice. Brazilian J Vet Res Anim Sci 53: 138–145. https://doi.org/10.11606/issn.1678-4456.v53i2p138-145.
Schemmel KE, Padiyara RS, D’Souza JJ (2010) Aldose reductase inhibitors in the treatment of diabetic peripheral neuropathy: a review. J Diabetes Complications 24:354–360. https://doi.org/10.1016/j.jdiacomp.2009.07.005. (PMID: 10.1016/j.jdiacomp.2009.07.00519748287)
Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113:1202–1205. https://doi.org/10.1016/j.foodchem.2008.08.008. (PMID: 10.1016/j.foodchem.2008.08.008)
Shiobara Y, Inoue S, Kato K, Nishiguchi Y, Oishi Y, Nishimoto N, Oliveira Fd, Akisue G, Akisue MK, Hashimoto G (1993) Nortriterpenoid, triterpenoids and ecdysteroids from Pfaffia glomerata. Phytochemistry. https://doi.org/10.1016/0031-9422(93)85172-N. (PMID: 10.1016/0031-9422(93)85172-N)
Singh A, Sharma S, Arora S, Attri S, Kaur P, Gulati HK, Bhagat K, Kumar N, Singh H, Singh JV (2020) New coumarin-benzotriazole based hybrid molecules as inhibitors of acetylcholinesterase and amyloid aggregation. Bioorg Med Chem Lett 30:127477. https://doi.org/10.1016/j.bmcl.2020.127477. (PMID: 10.1016/j.bmcl.2020.12747732781220)
Uddin MS, Al Mamun A, Kabir MT, Jakaria M, Mathew B, Barreto GE, Ashraf GM (2019) Nootropic and anti-Alzheimer’s actions of medicinal plants: molecular insight into therapeutic potential to alleviate Alzheimer’s neuropathology. Mol Neurobiol 56:4925–4944. https://doi.org/10.1007/s12035-018-1420-2. (PMID: 10.1007/s12035-018-1420-230414087)
Vigo C, Narita E, Nakamura C, Marques L (2003) Avaliação dos efeitos das raízes de Pfaffia glomerata (Spreng.) Pedersen sobre o tempo de sono e crescimento bacteriano. Rev Bras 13:14–17. https://doi.org/10.1590/S0102-695X2003000400006. (PMID: 10.1590/S0102-695X2003000400006)
Wagner H, Bladt S (1996) Plant drug analysis: a thin layer chromatography atlas. Springer Sci Bus Media. https://doi.org/10.1007/978-3-642-00574-9. (PMID: 10.1007/978-3-642-00574-9)
Wang W, Yagiz Y, Buran TJ, do Nascimento Nunes C and Gu L, (2011) Phytochemicals from berries and grapes inhibited the formation of advanced glycation end-products by scavenging reactive carbonyls. Food Res Int 44:2666–2673. https://doi.org/10.1016/j.foodres.2011.05.022. (PMID: 10.1016/j.foodres.2011.05.022)
WHO (2018) World Health Organization. Towards a dementia plan: a WHO guide.
Xue Q, Yan Y, Zhang R, Xiong H (2018) Regulation of iNOS on immune cells and its role in diseases. Int J Mol Sci 19:3805. https://doi.org/10.3390/ijms19123805. (PMID: 10.3390/ijms19123805305010756320759)
Yeh W-J, Hsia S-M, Lee W-H, Wu C-H (2017) Polyphenols with antiglycation activity and mechanisms of action: a review of recent findings. J Food Drug Anal 25:84–92. https://doi.org/10.1016/j.jfda.2016.10.017. (PMID: 10.1016/j.jfda.2016.10.01728911546)
فهرسة مساهمة: Keywords: Alzheimer; Brazilian ginseng; Natural products; Oxidative status; β-ecdysone
المشرفين على المادة: 0 (Antioxidants)
0 (Cholinesterase Inhibitors)
0 (Phytochemicals)
0 (Plant Extracts)
تواريخ الأحداث: Date Created: 20240110 Date Completed: 20240624 Latest Revision: 20240624
رمز التحديث: 20240624
DOI: 10.1007/s00709-023-01916-9
PMID: 38200344
قاعدة البيانات: MEDLINE
الوصف
تدمد:1615-6102
DOI:10.1007/s00709-023-01916-9