دورية أكاديمية

Isotherms, kinetics and thermodynamics of industrial dye acid red 27 adsorption on Sugarcane Bagasse Ash.

التفاصيل البيبلوغرافية
العنوان: Isotherms, kinetics and thermodynamics of industrial dye acid red 27 adsorption on Sugarcane Bagasse Ash.
المؤلفون: de Santana JE; Chemical Engineering Department, Federal University of Pernambuco, Recife, PE, 50.740-590, Brazil. joana.santana@ufpe.br., de Andrade FGS; Chemical Engineering Department, Federal University of Pernambuco, Recife, PE, 50.740-590, Brazil., Ferreira AF; Departament of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, 50.740-590, Brazil., Ghislandi MG; Engineering Campus, Federal Rural University of Pernambuco, Cabo de Santo Agostinho, PE, 54518-430, Brazil., da Motta Sobrinho MA; Chemical Engineering Department, Federal University of Pernambuco, Recife, PE, 50.740-590, Brazil.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Jan 11. Date of Electronic Publication: 2024 Jan 11.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مستخلص: In this study, sugarcane bagasse ash (SCBA), obtained as residue from the sugar mill, was used as an adsorbent for Acid Red 27 (AR27) removal from aqueous solutions. The ash characterization data showed 23.63% of organic compounds and silica (α-SiO 2 ) as the most expressive inorganic compound (confirmed by X-ray diffractogram), the BET surface area had a value of 62.79 m 2 .g -1 and the pH pzc was 8.45. Regarding the adsorptive tests, the optimal initial pH to the dye removal was 2.0. The adsorption equilibrium reached in about 4 h contact time and optimum SCBA dosage was found to be 4 g.L -1 . The pseudo-second order model best represented the adsorption kinetics. The Freundlich equation presented the best fit to the equilibrium data for the removal of AR27 by ash, with maximum adsorption capacity of 15 mg.g -1 at pH 2.0. Thermodynamic study indicate that AR27 adsorption on SCBA occurs through a physisorption mechanism, with ΔHº ads  < 15 kJ.mol -1 . The ΔHº ads evaluated by Vant' Hoff equation was explained as a combination of water desorption enthalpy, ΔHº W and isosteric like enthalpy, ΔHº D for the dye adsorption in liquid environment. The ΔHº D  = 9.2 kJ.mol -1 was calculated from Clausius-Clapeyron approach. The effects of coexisting anions on the adsorption and regeneration and reuse of the adsorbent were also investigated. This study suggests that SCBA, which was used without any pretreatment, has the potential to be applied as a low-cost adsorbent to mitigate effluents contamination with AR27 dye at low concentrations.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Ahmad S, Wong YC, Veloo KV (2018) Sugarcane bagasse powder as biosorbent for reactive red 120 removals from aqueous solution. In IOP Conf Ser: Earth Environ Sci 140:012027. https://doi.org/10.1088/1755-1315/140/1/012027. (PMID: 10.1088/1755-1315/140/1/012027)
Al-Aoh HA, Maah MJ, Yahya R, Abas MRB (2013) A comparative investigation on adsorption performances of activated carbon prepared from coconut husk fiber and commercial activated carbon for acid red 27 dye. Asian J Chem 25:9582. https://doi.org/10.14233/ajchem.2013.15082A. (PMID: 10.14233/ajchem.2013.15082A)
Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM (2008) Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigm 77:16–23. https://doi.org/10.1016/j.dyepig.2007.03.001. (PMID: 10.1016/j.dyepig.2007.03.001)
Alver E, Metin AU (2012) Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies. Chem Eng J 200–202:59–67. https://doi.org/10.1016/j.cej.2012.06.038. (PMID: 10.1016/j.cej.2012.06.038)
Andrade Neto JDS, de França MJS, de Amorim Junior NS, Ribeiro DV (2021) Effects of adding sugarcane bagasse ash on the properties and durability of concrete. Constr Build Mater 266:120959. https://doi.org/10.1016/j.conbuildmat.2020.120959. (PMID: 10.1016/j.conbuildmat.2020.120959)
Arabkhani P, Javadian H, Asfaram A, Sadeghfar F, Sadegh F (2021) Synthesis of magnetic tungsten disulfide/carbon nanotubes nanocomposite (WS2/Fe3O4/CNTs-NC) for highly efficient ultrasound-assisted rapid removal of amaranth and brilliant blue FCF hazardous dyes. J Hazard Mater 420:126644. https://doi.org/10.1016/j.jhazmat.2021.126644. (PMID: 10.1016/j.jhazmat.2021.126644)
Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem 2017:1–11. https://doi.org/10.1155/2017/3039817. (PMID: 10.1155/2017/3039817)
Chhabra M, Mishra S, Sreekrishnan TR (2015) Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27. J Environ Health Sci Eng 13:1–9. https://doi.org/10.1186/s40201-015-0192-0. (PMID: 10.1186/s40201-015-0192-0)
CONAB - Companhia Nacional de Abastecimento (2023a) Série Histórica das Safras. https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras (in Portuguese). Accessed 28 july 2023.
CONAB - Companhia Nacional de Abastecimento (2023b) Análise mensal da cana-de-açúcar (maio/junho 2023). https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuario-e-extrativista/analises-do-mercado/historico-mensal-de-cana-de-acucar (in Portuguese). Accessed 28 july 2023.
Cordeiro GC, Toledo Filho RD, Fairbairn EDMR (2009) Characterization of sugar cane bagasse ash for use as pozzolan in cementitious materials. Quim Nova 32:82–86. https://doi.org/10.1590/S0100-40422009000100016. (PMID: 10.1590/S0100-40422009000100016)
Deng Z, Sun S, Li H, Pan D, Patil RR, Guo Z, Seok I (2021) Modification of coconut shell-based activated carbon and purification of wastewater. Adv Compos Hybrid Mater 4:65–73. https://doi.org/10.1007/s42114-021-00205-4. (PMID: 10.1007/s42114-021-00205-4)
Ebrahimpoor S, Kiarostami V, Khosravi M, Davallo M, Ghaedi A (2019) Bees metaheuristic algorithm with the aid of artificial neural networks for optimization of acid red 27 dye adsorption onto novel polypyrrole/SrFe 12 O 19/graphene oxide nanocomposite. Polym Bull 76:6529–6553. https://doi.org/10.1007/s00289-019-02700-7. (PMID: 10.1007/s00289-019-02700-7)
FAOSTAT - Food and Agriculture Organization of the United Nations (2023) Countries by commodity. https://www.fao.org/faostat/en/#rankings/countries&#95;by&#95;commodity . Accessed 28 july 2023.
Freitas FBA, Câmara MYF, Freire MDF (2015) Determinação do PCZ de adsorventes naturais utilizados na remoção de contaminantes em soluções aquosas. Blucher Chem Proc 3:610–618. https://doi.org/10.5151/chenpro-5erq-am1. (PMID: 10.5151/chenpro-5erq-am1)
Frías M, Villar E, Savastano H (2011) Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cement Concr Compos 33:490–496. https://doi.org/10.1016/j.cemconcomp.2011.02.003. (PMID: 10.1016/j.cemconcomp.2011.02.003)
Gan YX (2021) Activated Carbon from Biomass Sustainable Sources. J Carbon Res 7:39. https://doi.org/10.3390/c7020039. (PMID: 10.3390/c7020039)
Gar PS, Suresh N, Bindiganavile V (2017) Sugar cane bagasse ash as a pozzolanic admixture in concrete for resistance to sustained elevated temperatures. Constr Build Mater 153:929–936. https://doi.org/10.1016/j.conbuildmat.2017.07.107. (PMID: 10.1016/j.conbuildmat.2017.07.107)
Gupta VK, Mohan D, Sharma S, Sharma M (2000) Removal of Basic Dyes (Rhodamine B and Methylene Blue) from Aqueous Solutions Using Bagasse Fly Ash. Sep Sci Technol 35:2097–2113. https://doi.org/10.1081/SS-100102091. (PMID: 10.1081/SS-100102091)
Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5. (PMID: 10.1016/S0032-9592(98)00112-5)
Jovanovski G, Makreski P (2016) Minerals from Macedonia. XXX. Complementary use of vibrational spectroscopy and X-ray powder diffraction for spectra-structural study of some cyclo-, phyllo- and tectosilicate minerals: A review. Maced J Chem Chem Eng 35:125–155. https://doi.org/10.20450/mjcce.2016.1047. (PMID: 10.20450/mjcce.2016.1047)
Kalembkiewicz J, Galas D, Sitarz-Palczak E (2018) The Physicochemical Properties and Composition of Biomass Ash and Evaluating Directions of its Applications. Pol J Environ Stud 27:2593–2603. https://doi.org/10.15244/pjoes/80870. (PMID: 10.15244/pjoes/80870)
Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048. (PMID: 10.1016/j.molliq.2018.10.048)
Lima EC, Gomes AA, Tran HN (2020) Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (∆S° and ∆H°). J Mol Liq 311:113315. https://doi.org/10.1016/j.molliq.2020.113315. (PMID: 10.1016/j.molliq.2020.113315)
Mahmood T, Saddique MT, Naeem A, Westerhoff P, Mustafa S, Alum A (2011) Comparison of different methods for the point of zero charge determination of NiO. Ind Eng Chem Res 50:10017–10023. https://doi.org/10.1021/ie200271d. (PMID: 10.1021/ie200271d)
Mall ID, Srivastava VC, Agarwal NK, Mishra IM (2005) Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids Surf, A 264:17–28. https://doi.org/10.1016/j.colsurfa.2005.03.027. (PMID: 10.1016/j.colsurfa.2005.03.027)
Mall ID, Srivastava VC, Agarwal NK (2006) Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses. Dyes Pigm 69:210–223. https://doi.org/10.1016/j.dyepig.2005.03.013. (PMID: 10.1016/j.dyepig.2005.03.013)
Mane VS, Mall ID, Srivastava VC (2007) Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution. Dyes Pigm 73:269–278. https://doi.org/10.1016/j.dyepig.2005.12.006. (PMID: 10.1016/j.dyepig.2005.12.006)
Matos WEC, da Silva HDJB, da Paz GM, dos Santos VB (2021) Utilization of sugarcane bagasse ashes as filler or pozzolanic material for the cementitious mortar production: a review. Materia-Rio De Janeiro 26. https://doi.org/10.1590/S1517-707620210004.1322.
Metivier-Pignon H, Faur C, Le Cloirec P (2007) Adsorption of dyes onto activated carbon cloth: Using QSPRs as tools to approach adsorption mechanisms. Chemosphere 66:887–893. https://doi.org/10.1016/j.chemosphere.2006.06.032. (PMID: 10.1016/j.chemosphere.2006.06.032)
Mittal A (2006) Use of hen feathers as potential adsorbent for the removal of a hazardous dye, Brilliant Blue FCF, from wastewater. J Hazard Mater 128:233–239. https://doi.org/10.1016/j.jhazmat.2005.08.043. (PMID: 10.1016/j.jhazmat.2005.08.043)
Mor S, Negi P, Ravindra K (2019) Potential of agro-waste sugarcane bagasse ash for the removal of ammoniacal nitrogen from landfill leachate. Environ Sci Pollut Res 26:24516–24531. https://doi.org/10.1007/s11356-019-05563-7. (PMID: 10.1007/s11356-019-05563-7)
Mosoarca G, Vancea C, Popa S, Gheju M, Boran S (2020) Syringa vulgaris leaves powder a novel low-cost adsorbent for methylene blue removal: Isotherms, kinetics, thermodynamic and optimization by Taguchi method. Sci Rep 10:17676. https://doi.org/10.1038/s41598-020-74819-x. (PMID: 10.1038/s41598-020-74819-x)
Nassar NN (2010) Kinetics, mechanistic, equilibrium, and thermodynamic studies on the adsorption of acid red dye from wastewater by γ-Fe2O3 nanoadsorbents. Sep Sci Technol 45:1092–1103. https://doi.org/10.1080/01496391003696921. (PMID: 10.1080/01496391003696921)
Nuhnen A, Janiak C (2020) A practical guide to calculate the isosteric heat/enthalpy of adsorption via adsorption isotherms in metal–organic frameworks. Mofs Dalton Trans 49:10295. https://doi.org/10.1039/d0dt01784a. (PMID: 10.1039/d0dt01784a)
Patel H (2020) Environmental valorisation of bagasse fly ash: a review. RSC Adv 10:31611–31621. https://doi.org/10.1039/D0RA06422J. (PMID: 10.1039/D0RA06422J)
Patel H (2021) Review on solvent desorption study from exhausted adsorbent. J Saudi Chem Soc 25:101302. https://doi.org/10.1016/j.jscs.2021.101302. (PMID: 10.1016/j.jscs.2021.101302)
Patil C, Manjunath M, Hosamane S, Bandekar S, Athani R (2021) Pozzolonic activity and strength activity index of bagasse ash and fly ash blended cement mortar. Mater Today: Proceedings 42:1456–1461. https://doi.org/10.1016/j.matpr.2021.01.251. (PMID: 10.1016/j.matpr.2021.01.251)
Pezoti O, Cazetta AL, Bedin KC, Souza LS, Martins AC, Silva TL, Santos Júnios OO, Visentainer JV, Almeida VC (2016) NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chem Eng J 288:778–788. https://doi.org/10.1016/j.cej.2015.12.042. (PMID: 10.1016/j.cej.2015.12.042)
Pinedo-Hernández S, Díaz-Nava C, Solache-Ríos M (2012) Sorption behavior of Brilliant Blue FCF by a Fe-Zeolitic tuff. Water Air Soil Pollut 223:467–475. https://doi.org/10.1007/s11270-011-0877-7. (PMID: 10.1007/s11270-011-0877-7)
Rahman NA, Widhiana I, Juliastuti SR, Setyawan H (2015) Synthesis of mesoporous silica with controlled pore structure from bagasse ash as a silica source. Colloids Surf, A 476:1–7. https://doi.org/10.1016/j.colsurfa.2015.03.018. (PMID: 10.1016/j.colsurfa.2015.03.018)
Rey C, Combes C, Drouet C, Grossin D, Bertrand G, Soulié J (2017) 1.11 Bioactive Calcium Phosphate Compounds: Physical Chemistry. Compr Biomater II:244–290. https://doi.org/10.1016/B978-0-12-803581-8.10171-7. (PMID: 10.1016/B978-0-12-803581-8.10171-7)
Ribeiro DV, Morelli MR (2014) Effect of calcination temperature on the pozzolanic activity of Brazilian sugar cane bagasse ash (SCBA). Mater Res 17:974–981. https://doi.org/10.1590/S1516-14392014005000093. (PMID: 10.1590/S1516-14392014005000093)
Robati D (2013) Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J Nanostructure Chem 3:1–6. https://doi.org/10.1186/2193-8865-3-55. (PMID: 10.1186/2193-8865-3-55)
Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids (Technical Report). Pure Appl Chem 66:1739–1758. https://doi.org/10.1351/pac199466081739. (PMID: 10.1351/pac199466081739)
Sahmoune MN (2018) Thermodynamic Properties of Heavy Metals Ions Adsorption by Green Adsorbents. Green Adsorb Pollut Remov 193–213. https://doi.org/10.1007/978-3-319-92111-2&#95;6.
Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination 280:1–12. https://doi.org/10.1016/j.desal.2011.07.019. (PMID: 10.1016/j.desal.2011.07.019)
Salman JM, Njoku VO, Hameed BH (2011a) Adsorption of pesticides from aqueous solution onto banana stalk activated carbon. Chem Eng J 174:41–48. https://doi.org/10.1016/j.cej.2011.08.026. (PMID: 10.1016/j.cej.2011.08.026)
Salman JM, Njoku VO, Hameed BH (2011b) Batch and fixed-bed adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm frond activated carbon. Chem Eng J 174:33–40. https://doi.org/10.1016/j.cej.2011.08.024. (PMID: 10.1016/j.cej.2011.08.024)
Salman-Naeem M, Javed S, Baheti V, Wiener J, Javed MU, Ul Hassan SZ, Mazari A, Naeem J (2018) Adsorption kinetics of acid red on activated carbon web prepared from acrylic fibrous waste. Fibers and Polym 19:71–81. https://doi.org/10.1007/s12221-018-7189-5. (PMID: 10.1007/s12221-018-7189-5)
Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds. John Wiley & Sons, Inc.
Souza AE, Teixeira SR, Santos GTA, Costa FB, Longo E (2011) Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials. J Environ Manag 92:2774–2780. https://doi.org/10.1016/j.jenvman.2011.06.020. (PMID: 10.1016/j.jenvman.2011.06.020)
Sposito G (1998) On points of zero charge. Environ Sci Technol 32:2815–2819. https://doi.org/10.1021/es9802347. (PMID: 10.1021/es9802347)
Sriatun S, Taslimah T, Suyati L (2018) Synthesis of zeolite from sugarcane bagasse ash using cetyltrimethylammonium bromide as structure directing agent. Indonesian J Chem 18:159–165. https://doi.org/10.22146/ijc.22197. (PMID: 10.22146/ijc.22197)
Teixeira SR, de Souza AE, Santos GTA, Peña AFV, Miguel AG (2008) Sugarcane bagasse ash as a potential quartz replacement in red ceramic. J Am Ceram Soc 91:1883–1887. https://doi.org/10.1111/j.1551-2916.2007.02212.x. (PMID: 10.1111/j.1551-2916.2007.02212.x)
Trivedi NS, Mandavgane SA, Kulkarni BD (2016) Mustard plant ash: a source of micronutrient and an adsorbent for removal of 2,4-dichlorophenoxyacetic acid. Environ Sci Pollut Res 23:20087–20099. https://doi.org/10.1007/s11356-016-6202-7. (PMID: 10.1007/s11356-016-6202-7)
Yan W, Liu D, Tan D, Yuan P, Chen M (2012) FTIR spectroscopy study of the structure changes of palygorskite under heating. Spectrochim Acta Part A Mol Biomol Spectrosc 97:1052–1057. https://doi.org/10.1016/j.saa.2012.07.085. (PMID: 10.1016/j.saa.2012.07.085)
Yusof NH, Foo KY, Wilson LD, Hameed BH, Hazwan-Hussin M (2020) Microwave-Assisted Synthesis of Polyethyleneimine Grafted Chitosan Beads for the Adsorption of Acid Red 27. J Polym Environ 28:542–552. https://doi.org/10.1007/s10924-019-01628-3. (PMID: 10.1007/s10924-019-01628-3)
Zhang P, Liao W, Kumar A, Zhang Q, Ma H (2020) Characterization of sugarcane bagasse ash as a potential supplementary cementitious material: Comparison with coal combustion fly ash. J Clean Prod 277:123834. https://doi.org/10.1016/j.jclepro.2020.123834. (PMID: 10.1016/j.jclepro.2020.123834)
معلومات مُعتمدة: 142446/2018-1 Conselho Nacional de Desenvolvimento Científico e Tecnológico; BIC-0358-3.07/23 Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco
فهرسة مساهمة: Keywords: Adsorption kinetics; Decontamination; Dye adsorption; Isosteric enthalpy; Isotherms; Sugar mill waste; Sustainability
تواريخ الأحداث: Date Created: 20240111 Latest Revision: 20240111
رمز التحديث: 20240111
DOI: 10.1007/s11356-024-31917-x
PMID: 38206467
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-024-31917-x