دورية أكاديمية

Musical training is not associated with spectral context effects in instrument sound categorization.

التفاصيل البيبلوغرافية
العنوان: Musical training is not associated with spectral context effects in instrument sound categorization.
المؤلفون: Shorey AE; Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, 40292, USA. anya.shorey@louisville.edu., King CJ; Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, 40292, USA. caleb.king.1@louisville.edu., Whiteford KL; Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA., Stilp CE; Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, 40292, USA.
المصدر: Attention, perception & psychophysics [Atten Percept Psychophys] 2024 Apr; Vol. 86 (3), pp. 991-1007. Date of Electronic Publication: 2024 Jan 12.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101495384 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1943-393X (Electronic) Linking ISSN: 19433921 NLM ISO Abbreviation: Atten Percept Psychophys Subsets: MEDLINE
أسماء مطبوعة: Publication: 2011- : New York : Springer
Original Publication: Austin, Tex. : Psychonomic Society
مواضيع طبية MeSH: Music* , Pitch Discrimination*, Humans ; Female ; Young Adult ; Male ; Adult ; Timbre Perception ; Pitch Perception ; Practice, Psychological
مستخلص: Musicians display a variety of auditory perceptual benefits relative to people with little or no musical training; these benefits are collectively referred to as the "musician advantage." Importantly, musicians consistently outperform nonmusicians for tasks relating to pitch, but there are mixed reports as to musicians outperforming nonmusicians for timbre-related tasks. Due to their experience manipulating the timbre of their instrument or voice in performance, we hypothesized that musicians would be more sensitive to acoustic context effects stemming from the spectral changes in timbre across a musical context passage (played by a string quintet then filtered) and a target instrument sound (French horn or tenor saxophone; Experiment 1). Additionally, we investigated the role of a musician's primary instrument of instruction by recruiting French horn and tenor saxophone players to also complete this task (Experiment 2). Consistent with the musician advantage literature, musicians exhibited superior pitch discrimination to nonmusicians. Contrary to our main hypothesis, there was no difference between musicians and nonmusicians in how spectral context effects shaped instrument sound categorization. Thus, musicians may only outperform nonmusicians for some auditory skills relevant to music (e.g., pitch perception) but not others (e.g., timbre perception via spectral differences).
(© 2024. The Psychonomic Society, Inc.)
References: Allen, E. J., & Oxenham, A. J. (2014). Symmetric interactions and interference between pitch and timbre. The Journal of the Acoustical Society of America, 135(3), 1371–1379. https://doi.org/10.1121/1.4863269. (PMID: 10.1121/1.4863269246062753985978)
ANSI. (1994). Psychoacoustic Terminology: Timbre. American National Standards Institute.
Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N., & Evershed, J. K. (2020). Gorilla in our midst: An online behavioral experiment builder. Behavior Research Methods, 52(1), 388–407. https://doi.org/10.3758/s13428-019-01237-x. (PMID: 10.3758/s13428-019-01237-x31016684)
Başkent, D., & Gaudrain, E. (2016). Musician advantage for speech-on-speech perception. The Journal of the Acoustical Society of America, 139(3), EL51–EL56. https://doi.org/10.1121/1.4942628. (PMID: 10.1121/1.4942628)
Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 2021.  https://doi.org/10.18637/jss.v067.i01.
Bianchi, F., Hjortkjær, J., Santurette, S., Zatorre, R. J., Siebner, H. R., & Dau, T. (2017). Subcortical and cortical correlates of pitch discrimination: Evidence for two levels of neuroplasticity in musicians. NeuroImage, 163(July), 398–412. https://doi.org/10.1016/j.neuroimage.2017.07.057. (PMID: 10.1016/j.neuroimage.2017.07.05728774646)
Bianchi, F., Santurette, S., Wendt, D., & Dau, T. (2016). Pitch Discrimination in Musicians and Non-Musicians: Effects of Harmonic Resolvability and Processing Effort. JARO - Journal of the Association for Research in Otolaryngology, 17(1), 69–79. https://doi.org/10.1007/s10162-015-0548-2. (PMID: 10.1007/s10162-015-0548-226637239)
Bidelman, G. M., Nelms, C., & Bhagat, S. P. (2016). Musical experience sharpens human cochlear tuning. Hearing Research, 335, 40–46. https://doi.org/10.1016/j.heares.2016.02.012. (PMID: 10.1016/j.heares.2016.02.01226900073)
Bidelman, G. M., Schug, J. M., Jennings, S. G., & Bhagat, S. P. (2014). Psychophysical auditory filter estimates reveal sharper cochlear tuning in musicians. The Journal of the Acoustical Society of America, 136(1), EL33–EL39. https://doi.org/10.1121/1.4885484. (PMID: 10.1121/1.4885484)
Bigoni, F., & Dahl, S. (2018). Timbre discrimination for brief instrument sounds. Proceedings of the 19th International Society for Music Information Retrieval Conference. ISMIR, 2018, 128–134.
Bishop, L., & Goebl, W. (2014). Context-specific effects of musical expertise on audiovisual integration. Frontiers in Psychology, 5, 1–14. https://doi.org/10.3389/fpsyg.2014.01123. (PMID: 10.3389/fpsyg.2014.01123)
Boebinger, D., Evans, S., Rosen, S., Lima, C. F., Manly, T., & Scott, S. K. (2015). Musicians and non-musicians are equally adept at perceiving masked speech. The Journal of the Acoustical Society of America, 137(1), 378–387. https://doi.org/10.1121/1.4904537. (PMID: 10.1121/1.490453725618067)
Boersma, P., & Weenick, D. (2021). Praat: Doing phonetics by computer [Computer program]. . In Version 6.1.50, retrieved 20 June 2021 from http://www.praat.org/ (p. undefined).
Bosker, H. R., Sjerps, M. J., & Reinisch, E. (2020). Spectral contrast effects are modulated by selective attention in “cocktail party” settings. Attention, Perception, and Psychophysics, 82(3), 1318–1332. https://doi.org/10.3758/s13414-019-01824-2. (PMID: 10.3758/s13414-019-01824-2)
Chartrand, J. P., & Belin, P. (2006). Superior voice timbre processing in musicians. Neuroscience Letters, 405(3), 164–167. https://doi.org/10.1016/j.neulet.2006.06.053. (PMID: 10.1016/j.neulet.2006.06.05316860471)
Clayton, K. K., Swaminathan, J., Yazdanbakhsh, A., Zuk, J., Patel, A. D., & Kidd, G. (2016). Executive function, visual attention and the cocktail party problem in musicians and non-musicians. PLoS ONE, 11(7). https://doi.org/10.1371/journal.pone.0157638.
Deroche, M. L. D., Limb, C. J., Chatterjee, M., & Gracco, V. L. (2017). Similar abilities of musicians and non-musicians to segregate voices by fundamental frequency. The Journal of the Acoustical Society of America, 142(4), 1739–1755. https://doi.org/10.1121/1.5005496. (PMID: 10.1121/1.5005496290926125626570)
Dubinsky, E., Wood, E. A., Nespoli, G., & Russo, F. A. (2019). Short-Term Choir Singing Supports Speech-in-Noise Perception and Neural Pitch Strength in Older Adults With Age-Related Hearing Loss. Frontiers in Neuroscience, 13(November). https://doi.org/10.3389/fnins.2019.01153.
Elliott, T. M., Hamilton, L. S., & Theunissen, F. E. (2013). Acoustic structure of the five perceptual dimensions of timbre in orchestral instrument tones. The Journal of the Acoustical Society of America, 133(1), 389–404. https://doi.org/10.1121/1.4770244. (PMID: 10.1121/1.4770244232979113548835)
Ely, M. C. (1992). Effects of Timbre on College Woodwind Players’ Intonational Performance and Perception. Journal of Research in Music Education, 40(2), 158–167. https://doi.org/10.2307/3345565. (PMID: 10.2307/3345565)
Faulkner, A. (1985). Pitch discrimination of harmonic complex signals: Residue pitch or multiple component discriminations? Journal of the Acoustical Society of America, 78(6), 1993–2004. https://doi.org/10.1121/1.392656. (PMID: 10.1121/1.3926564078176)
Feng, L., & Oxenham, A. J. (2018). Spectral contrast effects produced by competing speech contexts. Journal of Experimental Psychology: Human Perception and Performance, 44(9), 1447–1457. https://doi.org/10.1037/xhp0000546. (PMID: 10.1037/xhp000054629847973)
Fine, P. A., & Moore, B. C. J. (1993). Frequency analysis and musical ability. Music Perception: An Interdisciplinary Journal, 11(1), 39–53. (PMID: 10.2307/40285598)
Fowler, C. A., Best, C. T., Mcroberts, G., Insabella, G., Luke, S., Kiln, P., Klan, L., Russeli, M., Silver, J., Speigel, P., & Womer, J. (1990). Young infants’ perception of liquid coarticulatory influences on following stop consonants. In Perception & Psychophysics (Vol. 48, Issue 6).
Frazier, J. M., Assgari, A. A., & Stilp, C. E. (2019). Musical instrument categorization is highly sensitive to spectral properties of earlier sounds. Attention, Perception, and Psychophysics, 81(4), 1119–1126. https://doi.org/10.3758/s13414-019-01675-x. (PMID: 10.3758/s13414-019-01675-x)
Fujioka, T., Trainor, L. J., Ross, B., Kakigi, R., & Pantev, C. (2005). Automatic encoding of polyphonic melodies in musicians and nonmusicians. Journal of Cognitive Neuroscience, 17(10), 1578–1592. https://doi.org/10.1162/089892905774597263. (PMID: 10.1162/08989290577459726316269098)
Geringer, J. M., Macleod, R. B., & Sasanfar, J. K. (2012). High School String Players’ Perception of Violin, Trumpet, and Voice Intonation. String Research Journal, 3, 81–96. https://doi.org/10.1177/194849921200300106. (PMID: 10.1177/194849921200300106)
Greer, R. D. (1969). The effect of timbre on brass-wind intonation. University of Michigan.
Grey, J. M. (1977). Timbre discrimination in musical patterns. Journal of the Acoustical Society of America, 64(2), 467–472. https://doi.org/10.1121/1.382018. (PMID: 10.1121/1.382018)
Jasmin, K., Sun, H., & Tierney, A. T. (2021). Effects of language experience on domain-general perceptual strategies. Cognition, 206(October 2020), 104481. https://doi.org/10.1016/j.cognition.2020.104481. (PMID: 10.1016/j.cognition.2020.10448133075568)
Kendall, R. A., & Carterette, E. C. (1991). Perceptual scaling of simultaneous wind instrument timbres. Music Perception, 8(4), 369–404. (PMID: 10.2307/40285519)
Kishon-Rabin, L., Amir, O., Vexler, Y., & Zaltz, Y. (2001). Pitch discrimination: Are professional musicians better than non-musicians? Journal of Basic and Clinical Physiology and Pharmacology, 12(2), 125–144. https://doi.org/10.1515/JBCPP.2001.12.2.125. (PMID: 10.1515/JBCPP.2001.12.2.12511605682)
Kraus, N., Skoe, E., Parbery-Clark, A., & Ashley, R. (2009). Experience-induced malleability in neural encoding of pitch, timbre, and timing: Implications for language and music. Annals of the New York Academy of Sciences, 1169, 543–557. https://doi.org/10.1111/j.1749-6632.2009.04549.x. (PMID: 10.1111/j.1749-6632.2009.04549.x196738372810198)
Lad, M., Billig, A. J., Kumar, S., & Griffiths, T. D. (2022). A specific relationship between musical sophistication and auditory working memory. Scientific Reports, 12(1), 3517, 1-10.
Lanning, J. M., & Stilp, C. (2020). Natural music context biases musical instrument categorization. Attention, Perception, and Psychophysics, 82(5), 2209–2214. https://doi.org/10.3758/s13414-020-01980-w. (PMID: 10.3758/s13414-020-01980-w)
Lotto, A. J., Kluender, K. R., & Holt, L. L. (1997). Perceptual compensation for coarticulation by Japanese quail ( Coturnix coturnix japonica ). The Journal of the Acoustical Society of America, 102(2), 1134–1140. https://doi.org/10.1121/1.419865. (PMID: 10.1121/1.4198659265760)
Madsen, S. M. K., Marschall, M., Dau, T., & Oxenham, A. J. (2019). Speech perception is similar for musicians and non-musicians across a wide range of conditions. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-46728-1.
Madsen, S. M. K., Whiteford, K. L., & Oxenham, A. J. (2017). Musicians do not benefit from differences in fundamental frequency when listening to speech in competing speech backgrounds. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-12937-9. (PMID: 10.1038/s41598-017-12937-9)
Mann, V. A. (1980). Influence of preceding liquid on stop-consonant perception. Perception & Psychophysics, 28(5), 407–412. (PMID: 10.3758/BF03204884)
Marvin, E. W., & Brinkman, A. R. (2000). The Effect of Key Color and Timbre on Absolute Pitch Recognition in Musical Contexts. Music Perception: An Interdisciplinary Journal, 18(2), 111–137. (PMID: 10.2307/40285905)
McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., & Krimphoff, J. (1995). Perceptual scaling of synthesized musical timbres: Common dimensions, specificities, and latent subject classes. Psychological Research, 58(3), 177–192. https://doi.org/10.1007/BF00419633. (PMID: 10.1007/BF004196338570786)
Micheyl, C., Delhommeau, K., Perrot, X., & Oxenham, A. J. (2006). Influence of musical and psychoacoustical training on pitch discrimination. Hearing Research, 219(1–2), 36–47. https://doi.org/10.1016/j.heares.2006.05.004. (PMID: 10.1016/j.heares.2006.05.00416839723)
Moore, B. C. J., Wan, J., Varathanathan, A., Naddell, S., & Baer, T. (2019). No Effect of Musical Training on Frequency Selectivity Estimated Using Three Methods. Trends in Hearing, 23, 1–9. https://doi.org/10.1177/2331216519841980. (PMID: 10.1177/2331216519841980)
Müllensiefen, D., Gingras, B., Musil, J., & Stewart, L. (2014). The Musicality of Non-Musicians: An Index for Assessing Musical Sophistication in the General Population. PLoS ONE, 9(2). https://doi.org/10.1371/journal.pone.0089642.
Musacchia, G., Sams, M., Skoe, E., & Kraus, N. (2007). Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15894–15898.  https://doi.org/10.1073/pnas.0701498104.
Opolko, F., & Wapnick, J. (1989). McGill University master samples user’s manual. McGill University.
Oxenham, A. J., Fligor, B. J., Mason, C. R., & Kidd, G. (2003). Informational masking and musical training. The Journal of the Acoustical Society of America, 114(3), 1543–1549. https://doi.org/10.1121/1.1598197. (PMID: 10.1121/1.159819714514207)
Palan, S., & Schitter, C. (2018). Prolific.ac—A subject pool for online experiments. Journal of Behavioral and Experimental Finance, 17, 22–27. https://doi.org/10.1016/j.jbef.2017.12.004. (PMID: 10.1016/j.jbef.2017.12.004)
Pantev, C., Roberts, L. E., Schulz, M., Engelien, A., & Ross, B. (2001). Timbre-specific enhancement of auditory cortical representations in musicians. NeuroReport, 12(1), 169–174 http://journals.lww.com/neuroreport. (PMID: 10.1097/00001756-200101220-0004111201080)
Parbery-Clark, A., Skoe, E., Lam, C., & Kraus, N. (2009). Musician enhancement for speech-in-noise. Ear and Hearing, 30(6), 653–661. https://doi.org/10.1097/AUD.0b013e3181b412e9. (PMID: 10.1097/AUD.0b013e3181b412e919734788)
Parbery-Clark, A., Strait, D. L., Anderson, S., Hittner, E., & Kraus, N. (2011). Musical experience and the aging auditory system: Implications for cognitive abilities and hearing speech in noise. PLoS ONE, 6(5). https://doi.org/10.1371/journal.pone.0018082.
Piazza, E. A., Theunissen, F. E., Wessel, D., & Whitney, D. (2018). Rapid Adaptation to the Timbre of Natural Sounds. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-32018-9.
Pitt, M. A. (1994). Perception of Pitch and Timbre by Musically Trained and Untrained Listeners. Journal of Experimental Psychology: Human Perception and Performance, 20(5), 976–986. https://doi.org/10.1037/0096-1523.20.5.976. (PMID: 10.1037/0096-1523.20.5.9767964532)
Preacher, K. J., MacCallum, R. C., Rucker, D. D., & Nicewander, W. A. (2005). Use of the extreme groups approach: A critical reexamination and new recommendations. Psychological Methods, 10(2), 178–192. https://doi.org/10.1037/1082-989X.10.2.178. (PMID: 10.1037/1082-989X.10.2.17815998176)
Ruggles, D. R., Freyman, R. L., & Oxenham, A. J. (2014). Influence of musical training on understanding voiced and whispered speech in noise. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0086980.
Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5(7), 688–694. https://doi.org/10.1038/nn871. (PMID: 10.1038/nn87112068300)
Shahin, A. J., Roberts, L. E., Chau, W., Trainor, L. J., & Miller, L. M. (2008). Music training leads to the development of timbre-specific gamma band activity. NeuroImage, 41(1), 113–122. https://doi.org/10.1016/j.neuroimage.2008.01.067. (PMID: 10.1016/j.neuroimage.2008.01.06718375147)
Siedenburg, K., Barg, F. M., & Schepker, H. (2021). Adaptive auditory brightness perception. Scientific Reports, 11(1), 21456, 1-11.
Siedenburg, K., & McAdams, S. (2017a). Four distinctions for the auditory “wastebasket” of timbre. Frontiers in Psychology, 8, Article 1747. https://doi.org/10.3389/fpsyg.2017.01747.
Siedenburg, K., & McAdams, S. (2017b). The role of long-term familiarity and attentional maintenance in short-term memory for timbre. Memory, 25(4), 550–564. https://doi.org/10.1080/09658211.2016.1197945. (PMID: 10.1080/09658211.2016.119794527314886)
Sjerps, M. J., & Reinisch, E. (2015). Divide and conquer: How perceptual contrast sensitivity and perceptual learning cooperate in reducing input variation in speech perception. Journal of Experimental Psychology: Human Perception and Performance, 41(3), 710–722. https://doi.org/10.1037/a0039028. (PMID: 10.1037/a003902825798784)
Spiegel, M. F., & Watson, C. S. (1984). Performance On Frequency-discrimination Tasks By Musicians And Nonmusicians. Journal of the Acoustical Society of America, 76(6), 1690–1695. https://doi.org/10.1121/1.391605. (PMID: 10.1121/1.391605)
Stilp, C. E. (2020). Evaluating peripheral versus central contributions to spectral context effects in speech perception. Hearing Research, 392, 107983. https://doi.org/10.1016/j.heares.2020.107983. (PMID: 10.1016/j.heares.2020.10798332464456)
Stilp, C. E., Alexander, J. M., Kiefte, M., & Kluender, K. R. (2010). Auditory color constancy: Calibration to reliable spectral properties across nonspeech context and targets. Attention, Perception, and Psychophysics, 72(2), 470–480. https://doi.org/10.1038/jid.2014.371. (PMID: 10.1038/jid.2014.371)
Strait, D. L., Chan, K., Ashley, R., & Kraus, N. (2012). Specialization among the specialized: Auditory brainstem function is tuned in to timbre. In Cortex (Vol. 48, Issue 3, pp. 360–362). https://doi.org/10.1016/j.cortex.2011.03.015.
Swaminathan, J., Mason, C. R., Streeter, T. M., Best, V., Kidd, G., & Patel, A. D. (2015). Musical training, individual differences and the cocktail party problem. Scientific Reports, 5. https://doi.org/10.1038/srep11628.
Team, R. C. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/.
Tervaniemi, M., Just, V., Koelsch, S., Widmann, A., & Schröger, E. (2005). Pitch discrimination accuracy in musicians vs nonmusicians: An event-related potential and behavioral study. Experimental Brain Research, 161(1), 1–10. https://doi.org/10.1007/s00221-004-2044-5. (PMID: 10.1007/s00221-004-2044-515551089)
von Békésy, G. (1967). Sensory Inhibition. Princeton University Press.
Warren, R. M. (1985). Criterion Shift Rule and Perceptual Homeostasis. In Psychological Review (Vol. 92, Issue 4).
Watkins, A. J. (1991). Central, auditory mechanisms of perceptual compensation for spectral-envelope distortion. Journal of the Acoustical Society of America, 90(6), 2942–2955. (PMID: 10.1121/1.4017691787236)
Wong, P. C. M., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420–422. https://doi.org/10.1038/nn1872. (PMID: 10.1038/nn1872173516334508274)
Woods, K. J. P., Siegel, M. H., Traer, J., & McDermott, J. H. (2017). Headphone screening to facilitate web-based auditory experiments. Attention, Perception, and Psychophysics, 79(7), 2064–2072. https://doi.org/10.3758/s13414-017-1361-2. (PMID: 10.3758/s13414-017-1361-2)
Yeend, I., Beach, E. F., Sharma, M., & Dillon, H. (2017). The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise. Hearing Research, 353, 224–236. https://doi.org/10.1016/j.heares.2017.07.006. (PMID: 10.1016/j.heares.2017.07.00628780178)
Zendel, B. R., & Alain, C. (2012). Musicians experience less age-related decline in central auditory processing. Psychology and Aging, 27(2), 410–417. https://doi.org/10.1037/a0024816. (PMID: 10.1037/a002481621910546)
فهرسة مساهمة: Keywords: Context effects; Musical instruments; Musician advantage; Spectral contrast effects
تواريخ الأحداث: Date Created: 20240112 Date Completed: 20240501 Latest Revision: 20240501
رمز التحديث: 20240502
DOI: 10.3758/s13414-023-02839-6
PMID: 38216848
قاعدة البيانات: MEDLINE
الوصف
تدمد:1943-393X
DOI:10.3758/s13414-023-02839-6