دورية أكاديمية

Probing the hair detectability of prohibited substances in sports: an in vivo-in silico-clinical approach and analytical implications compared with plasma, urine, and faeces.

التفاصيل البيبلوغرافية
العنوان: Probing the hair detectability of prohibited substances in sports: an in vivo-in silico-clinical approach and analytical implications compared with plasma, urine, and faeces.
المؤلفون: Hung SH; Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan., Kan HL; Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 350, Taiwan., Tung CW; Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 350, Taiwan., Lin YC; Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.; Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan., Chen TT; Department of Leisure Industry and Health Promotion, College of Humanities and Management, National Ilan University, Yilan County, 260, Taiwan., Tian C; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan., Chang WC; Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. cwchang@kmu.edu.tw.; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. cwchang@kmu.edu.tw.
المصدر: Archives of toxicology [Arch Toxicol] 2024 Mar; Vol. 98 (3), pp. 779-790. Date of Electronic Publication: 2024 Jan 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0417615 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0738 (Electronic) Linking ISSN: 03405761 NLM ISO Abbreviation: Arch Toxicol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag.
مواضيع طبية MeSH: Anabolic Agents* , Doping in Sports*/methods, Animals ; Humans ; Canrenone/analysis ; Diuretics/analysis ; Feces/chemistry ; Hair/chemistry ; Substance Abuse Detection/methods
مستخلص: Hair analysis is a crucial method in forensic toxicology with potential applications in revealing doping histories in sports. Despite its widespread use, knowledge about detectable substances in hair is limited. This study systematically assessed the detectability of prohibited substances in sports using a multifaceted approach. Initially, an animal model received a subset of 17 model drugs to compare dose dependencies and detection windows across different matrices. Subsequently, hair incorporation data from the animal experiment were extrapolated to all substances on the World Anti-Doping Agency's List through in-silico prediction. The detectability of substances in hair was further validated in a proof-of-concept human study involving the consumption of diuretics and masking agents. Semi-quantitative analysis of substances in specimens was performed using ultra-performance liquid chromatography-tandem mass spectrometry. Results showed plasma had optimal dose dependencies with limited detection windows, while urine, faeces, and hair exhibited a reasonable relationship with the administered dose. Notably, hair displayed the highest detection probability (14 out of 17) for compounds, including anabolic agents, hormones, and diuretics, with beta-2 agonists undetected. Diuretics such as furosemide, canrenone, and hydrochlorothiazide showed the highest hair incorporation. Authentic human hair confirmed diuretic detectability, and their use duration was determined via segmental analysis. Noteworthy is the first-time reporting of canrenone in human hair. Anabolic agents were expected in hair, whereas undetectable compounds, such as peptide hormones and beta-2 agonists, were likely due to large molecular mass or high polarity. This study enhances understanding of hair analysis in doping investigations, providing insights into substance detectability.
(© 2024. The Author(s).)
References: Breiman L (2001) Random forests. Mach Learn 45:5–32. (PMID: 10.1023/A:1010933404324)
Cadwallader AB, De La Torre X, Tieri A, Botrè F (2010) The abuse of diuretics as performance-enhancing drugs and masking agents in sport doping: pharmacology, toxicology and analysis. Br J Pharmacol 161(1):1–16. (PMID: 10.1111/j.1476-5381.2010.00789.x207187362962812)
Caplan YH, Goldberger BA (2001) Alternative specimens for workplace drug testing. J Anal Toxicol 25(5):396–399. (PMID: 10.1093/jat/25.5.39611499896)
Chang K-C, Chang Y-T, Tsai C-E (2018) Determination of ractopamine and salbutamol in pig hair by liquid chromatography tandem mass spectrometry. J Food Drug Anal 26(2):725–730. (PMID: 10.1016/j.jfda.2017.09.00529567243)
Chang WC-W, Wang P-H, Chang C-W, Chen Y-C, Liao P-C (2020) Extraction strategies for tackling complete hair metabolome using LC-HRMS-based analysis. Talanta 223:121708. (PMID: 10.1016/j.talanta.2020.12170833303158)
Cooper GA, Kronstrand R, Kintz P (2012) Society of Hair Testing guidelines for drug testing in hair. Forensic Sci Int 218(1–3):20–24. (PMID: 10.1016/j.forsciint.2011.10.02422088946)
Decheng S, Wei Z, Yu Z et al (2015) Validation of a confirmatory method of salbutamol in sheep hair by UPLC-MS/MS and its application to pharmacokinetic study. J Pharm Biomed Anal 114:12–15. (PMID: 10.1016/j.jpba.2015.04.00425988297)
Delcourt V, Garcia P, Pottier I et al (2021) Development of a standardized microflow LC gradient to enable sensitive and long-term detection of synthetic anabolic-androgenic steroids for high-throughput doping controls. Anal Chem 93(47):15590–15596. (PMID: 10.1021/acs.analchem.1c0339234791882)
Deshmukh N, Hussain I, Barker J, Petroczi A, Naughton DP (2010) Analysis of anabolic steroids in human hair using LC–MS/MS. Steroids 75(10):710–714. (PMID: 10.1016/j.steroids.2010.04.00720435054)
Euler L, Gillard N, Delahaut P et al (2022) Assessing human urinary clomiphene metabolites after consumption of eggs from clomiphene-treated laying hens using chromatographic-mass spectrometric approaches. Anal Chim Acta 1202:339661. (PMID: 10.1016/j.aca.2022.33966135341524)
Favretto D, Snenghi R, Pertile R et al (2019) Hair analysis to discriminate voluntary doping vs inadvertent ingestion of the aromatase inhibitor letrozole. Drug Test Anal 11(6):762–771. (PMID: 10.1002/dta.255530506949)
Ferreira C, Paulino C, Quintas A (2019) Extraction procedures for hair forensic toxicological analysis: a mini-review. Chem Res Toxicol 32(12):2367–2381. (PMID: 10.1021/acs.chemrestox.9b0030131701744)
Gheddar L, Raul J-S, Kintz P (2020) Testing for stanozolol, using UPLC–MS-MS and confirmation by UPLC–q-TOF-MS, in hair specimens collected from five different anatomical regions. J Anal Toxicol 44(8):834–839. (PMID: 10.1093/jat/bkaa02332128595)
Gheddar L, Batt MO, Raul JS, Kintz P (2021) Identification of furosemide in hair in a post-mortem case by UHPLC-MS/MS with guidance on interpretation. J Forensic Sci 66(1):272–277. (PMID: 10.1111/1556-4029.1458533027535)
Grob S (2022) Molinspiration cheminformatics free web services. https://www.molinspiration.com . Accessed 18 Oct 2022.
Joseph RE Jr, Höld KM, Wilkins DG, Rollins DE, Cone EJ (1999) Drug testing with alternative matrices II. Mechanisms of cocaine and codeine deposition in hair. J Anal Toxicol 23(6):396–408. (PMID: 10.1093/jat/23.6.39610517543)
Kamata T, Shima N, Sasaki K et al (2015) Time-course mass spectrometry imaging for depicting drug incorporation into hair. Anal Chem 87(11):5476–5481. (PMID: 10.1021/acs.analchem.5b0097125919888)
Kamata T, Shima N, Miki A et al (2020) High spatial-resolution matrix-assisted laser desorption/ionization-ion trap-time-of-flight tandem mass spectrometry imaging for depicting longitudinal and transverse distribution of drugs incorporated into hair. Anal Chem 92(8):5821–5829. (PMID: 10.1021/acs.analchem.9b0540132207609)
Kintz P (2007) Bioanalytical procedures for detection of chemical agents in hair in the case of drug-facilitated crimes. Anal Bioanal Chem 388(7):1467–1474. (PMID: 10.1007/s00216-007-1209-z17340077)
Kintz P, Cirimele V, Jeanneau T, Ludes B (1999) Identification of testosterone and testosterone esters in human hair. J Anal Toxicol 23(5):352–356. (PMID: 10.1093/jat/23.5.35210488923)
Kintz P, Gheddar L, Ameline A et al (2019) Complete post-mortem investigations in a death involving clenbuterol after long-term abuse. J Anal Toxicol 43(8):660–665. (PMID: 10.1093/jat/bkz05831436794)
Kintz P, Ameline A, Gheddar L, Raul JS (2020a) Testing for GW501516 (cardarine) in human hair using LC/MS–MS and confirmation by LC/HRMS. Drug Test Anal 12(7):980–986. (PMID: 10.1002/dta.280232298044)
Kintz P, Gheddar L, Ameline A, Arbouche N, Raul J-S (2020b) Hair testing for doping agents. What is known and what remains to do. Drug Test Anal 12(3):316–322. (PMID: 10.1002/dta.276631943812)
Kintz P, Gheddar L, Blanchot A, Ameline A, Raul J-S (2021a) In a case of death involving steroids, hair testing is more informative than blood or urine testing. J Anal Toxicol 45(8):829–834. (PMID: 10.1093/jat/bkab04833991187)
Kintz P, Gheddar L, Raul JS (2021b) Simultaneous testing for anabolic steroids in human hair specimens collected from various anatomic locations has several advantages when compared with the standard head hair analysis. Drug Test Anal 13(7):1445–1451. (PMID: 10.1002/dta.302033634609)
Kintz P, Gheddar L, Ameline A, Raul J-S (2022) Human hair testing for selective androgen receptor modulators (SARMs): current knowledge and limitations. Toxicol Anal Clin 34(1):83–89.
Kisanga ER, Mellgren G, Lien EA (2005) Excretion of hydroxylated metabolites of tamoxifen in human bile and urine. Anticancer Res 25(6C):4487–4492. (PMID: 16334131)
Krumbholz A, Anielski P, Gfrerer L et al (2014) Statistical significance of hair analysis of clenbuterol to discriminate therapeutic use from contamination. Drug Test Anal 6(11–12):1108–1116. (PMID: 10.1002/dta.174625388545)
Liu J, Tang C, Long R et al (2019) The use of hair as a long-term indicator of low-dose β2 agonist treatments in cattle: implications for growth-promoting purposes monitoring. Drug Test Anal 11(6):745–751. (PMID: 10.1002/dta.255130474322)
Mihailescu R, Aboul-Enein HY, Efstatide M (2000) Identification of tamoxifen and metabolites in human male urine by GC/MS. Biomed Chromatogr 14(3):180–183. (PMID: 10.1002/1099-0801(200005)14:3<180::AID-BMC958>3.0.CO;2-T10850622)
Müller A, Jungen H, Iwersen-Bergmann S, Sterneck M, Andresen-Streichert H (2013) Analysis of cyclosporin a in hair samples from liver transplanted patients. Ther Drug Monit 35(4):450–458. (PMID: 10.1097/FTD.0b013e31828abb1d23783168)
Nakahara Y, Kikura R (1996) Hair analysis for drugs of abuse XIII. Effect of structural factors on incorporation of drugs into hair: the incorporation rates of amphetamine analogs. Arch Toxicol 70:841–849. (PMID: 10.1007/s0020400503488911643)
Pfizer (2011) Material safety date sheet—anastrozole tablets. In: https://cdn.pfizer.com/pfizercom/products/material&#95;safety&#95;data/PZ01527.pdf . Accessed 18 Oct 2022.
Pragst F, Balikova MA (2006) State of the art in hair analysis for detection of drug and alcohol abuse. Clin Chim Acta 370(1–2):17–49. (PMID: 10.1016/j.cca.2006.02.01916624267)
Quraishi R, Jain R, Ambekar A (2017) 7 Dried blood spots for testing drugs of misuse. Detect Drug Misuse Biomark Anal Adv Interpret. https://doi.org/10.1039/9781782621577-00125. (PMID: 10.1039/9781782621577-00125)
Schänzer W, Opfermann G, Donike M (1990) Metabolism of stanozolol: identification and synthesis of urinary metabolites. J Steroid Biochem 36(1–2):153–174. (PMID: 10.1016/0022-4731(90)90126-D2362445)
Thevis M, Möller I, Thomas A et al (2010) Characterization of two major urinary metabolites of the PPARδ-agonist GW1516 and implementation of the drug in routine doping controls. Anal Bioanal Chem 396:2479–2491. (PMID: 10.1007/s00216-009-3283-x19946680)
Thevis M, Geyer H, Tretzel L, Schänzer W (2016) Sports drug testing using complementary matrices: advantages and limitations. J Pharm Biomed Anal 130:220–230. (PMID: 10.1016/j.jpba.2016.03.05527040951)
Thevis M, Walpurgis K, Thomas A (2019) Analytical approaches in human sports drug testing: recent advances, challenges, and solutions. Anal Chem 92(1):506–523. (PMID: 10.1021/acs.analchem.9b0463931610649)
Vogliardi S, Tucci M, Stocchero G, Ferrara SD, Favretto D (2015) Sample preparation methods for determination of drugs of abuse in hair samples: a review. Anal Chim Acta 857:1–27. (PMID: 10.1016/j.aca.2014.06.05325604816)
Vulić A, Pleadin J, Perši N, Stojković R, Ivanković S (2011) Accumulation of β-agonists clenbuterol and salbutamol in black and white mouse hair. J Anal Toxicol 35(8):566–570. (PMID: 10.1093/anatox/35.8.56622004676)
Wong JKY, Choi TLS, Kwok KY, Lei ENY, Wan TSM (2018) Doping control analysis of 121 prohibited substances in equine hair by liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 158:189–203. https://doi.org/10.1016/j.jpba.2018.05.043. (PMID: 10.1016/j.jpba.2018.05.04329885604)
World Anti-Doping Agency (2021) 2020 Anti-doping testing figures. https://www.wada-ama.org/sites/default/files/2022-01/2020&#95;anti-doping&#95;testing&#95;figures&#95;en.pdf . Accessed 18 Oct 2022.
World Anti-Doping Agency (2023) Prohibited list. https://www.wada-ama.org/sites/default/files/2023-05/2023list&#95;en&#95;final&#95;9&#95;september&#95;2022.pdf . Accessed 2 Nov 2023.
Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32(7):1466–1474. (PMID: 10.1002/jcc.2170721425294)
معلومات مُعتمدة: NSTC112-2628-H-037-001 National Science and Technology Council
فهرسة مساهمة: Keywords: Alternative matrix; Anabolic steroids; Anti-doping; Diuretics; Sports drug testing; World Anti-Doping Agency
المشرفين على المادة: 0 (Anabolic Agents)
78O20X9J0U (Canrenone)
0 (Diuretics)
تواريخ الأحداث: Date Created: 20240115 Date Completed: 20240214 Latest Revision: 20240409
رمز التحديث: 20240409
مُعرف محوري في PubMed: PMC10861659
DOI: 10.1007/s00204-023-03667-1
PMID: 38224356
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0738
DOI:10.1007/s00204-023-03667-1