دورية أكاديمية

Artificial intelligence-based three-dimensional templating for total joint arthroplasty planning: a scoping review.

التفاصيل البيبلوغرافية
العنوان: Artificial intelligence-based three-dimensional templating for total joint arthroplasty planning: a scoping review.
المؤلفون: Velasquez Garcia A; Mayo Clinic Department of Orthopedic Surgery, Rochester, MN, 55905, USA.; Department of Orthopedic Surgery, Clinica Universidad de Los Andes, Santiago, Chile., Bukowiec LG; Mayo Clinic Department of Orthopedic Surgery, Rochester, MN, 55905, USA., Yang L; Mayo Clinic Department of Orthopedic Surgery, Rochester, MN, 55905, USA., Nishikawa H; Mayo Clinic Department of Orthopedic Surgery, Rochester, MN, 55905, USA.; Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, Japan., Fitzsimmons JS; Mayo Clinic Department of Orthopedic Surgery, Rochester, MN, 55905, USA., Larson AN; Mayo Clinic Department of Orthopedic Surgery, Rochester, MN, 55905, USA., Taunton MJ; Mayo Clinic Department of Orthopedic Surgery, Rochester, MN, 55905, USA., Sanchez-Sotelo J; Mayo Clinic Department of Orthopedic Surgery, Rochester, MN, 55905, USA., O'Driscoll SW; Mayo Clinic Department of Orthopedic Surgery, Rochester, MN, 55905, USA., Wyles CC; Mayo Clinic Department of Orthopedic Surgery, Rochester, MN, 55905, USA. Wyles.Cody@mayo.edu.
المصدر: International orthopaedics [Int Orthop] 2024 Apr; Vol. 48 (4), pp. 997-1010. Date of Electronic Publication: 2024 Jan 15.
نوع المنشور: Journal Article; Review; Systematic Review
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 7705431 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-5195 (Electronic) Linking ISSN: 03412695 NLM ISO Abbreviation: Int Orthop
أسماء مطبوعة: Original Publication: Berlin : Springer Verlag
مواضيع طبية MeSH: Artificial Intelligence* , Imaging, Three-Dimensional*/methods , Arthroplasty, Replacement, Hip*/methods , Arthroplasty, Replacement, Knee*/methods, Humans ; Tomography, X-Ray Computed/methods ; Magnetic Resonance Imaging/methods ; Surgery, Computer-Assisted/methods ; Preoperative Care/methods
مستخلص: Purpose: The purpose of this review is to evaluate the current status of research on the application of artificial intelligence (AI)-based three-dimensional (3D) templating in preoperative planning of total joint arthroplasty.
Methods: This scoping review followed the PRISMA, PRISMA-ScR guidelines, and five stage methodological framework for scoping reviews. Studies of patients undergoing primary or revision joint arthroplasty surgery that utilised AI-based 3D templating for surgical planning were included. Outcome measures included dataset and model development characteristics, AI performance metrics, and time performance. After AI-based 3D planning, the accuracy of component size and placement estimation and postoperative outcome data were collected.
Results: Nine studies satisfied inclusion criteria including a focus on computed tomography (CT) or magnetic resonance imaging (MRI)-based AI templating for use in hip or knee arthroplasty. AI-based 3D templating systems reduced surgical planning time and improved implant size/position and imaging feature estimation compared to conventional radiographic templating. Several components of data processing and model development and testing were insufficiently covered in the studies included in this scoping review.
Conclusions: AI-based 3D templating systems have the potential to improve preoperative planning for joint arthroplasty surgery. This technology offers more accurate and personalized preoperative planning, which has potential to improve functional outcomes for patients. However, deficiencies in several key areas, including data handling, model development, and testing, can potentially hinder the reproducibility and reliability of the methods proposed. As such, further research is needed to definitively evaluate the efficacy and feasibility of these systems.
(© 2024. The Author(s) under exclusive licence to SICOT aisbl.)
References: Märtens N, Heinze M, Awiszus F et al (2021) Long-term survival and failure analysis of anatomical stemmed and stemless shoulder arthroplasties. Bone Joint J 103-B:1292–1300. https://doi.org/10.1302/0301-620X.103B7.BJJ-2020-0915.R3. (PMID: 10.1302/0301-620X.103B7.BJJ-2020-0915.R334192923)
Morrell AT, Layon DR, Scott MJ et al (2021) Enhanced recovery after primary total hip and knee arthroplasty: a systematic review. J Bone Joint Surg Am 103:1938–1947. https://doi.org/10.2106/JBJS.20.02169. (PMID: 10.2106/JBJS.20.0216934166275)
Gil JA, Kamal RN, Cone E, Weiss A-PC (2017) High survivorship and few complications with cementless total wrist arthroplasty at a mean followup of 9 years. Clin Orthop Relat Res 475:3082–3087. https://doi.org/10.1007/s11999-017-5445-z. (PMID: 10.1007/s11999-017-5445-z287216015670059)
Evans JP, Evans JT, Mohammad HR et al (2022) How long does an elbow replacement last? A systematic review and meta-analysis of case-series and national registry reports with more than 10 years of follow-up. Acta Orthop 93:495–502. https://doi.org/10.2340/17453674.2022.2753. (PMID: 10.2340/17453674.2022.275335642497)
Jeyaseelan L, Si-Hyeong Park S, Al-Rumaih H et al (2019) Outcomes following total ankle arthroplasty: a review of the registry data and current literature. Orthop Clin North Am 50:539–548. https://doi.org/10.1016/j.ocl.2019.06.004. (PMID: 10.1016/j.ocl.2019.06.00431466669)
Goldenberg BT, Samuelsen BT, Spratt JD et al (2020) Complications and implant survivorship following primary reverse total shoulder arthroplasty in patients younger than 65 years: a systematic review. J Shoulder Elbow Surg 29:1703–1711. https://doi.org/10.1016/j.jse.2020.02.004. (PMID: 10.1016/j.jse.2020.02.00432414609)
Sloan M, Premkumar A, Sheth NP (2018) Projected volume of primary total joint arthroplasty in the U.S., 2014 to 2030. J Bone Joint Surg - Am 100:1455–1460. https://doi.org/10.2106/JBJS.17.01617. (PMID: 10.2106/JBJS.17.0161730180053)
Villatte G, Muller A-S, Pereira B et al (2018) Use of Patient-Specific Instrumentation (PSI) for glenoid component positioning in shoulder arthroplasty. A systematic review and meta-analysis. PLoS One 13:e0201759. https://doi.org/10.1371/journal.pone.0201759. (PMID: 10.1371/journal.pone.0201759301334826104947)
Darwood A, Hurst SA, Villatte G et al (2022) Novel robotic technology for the rapid intraoperative manufacture of patient-specific instrumentation allowing for improved glenoid component accuracy in shoulder arthroplasty: a cadaveric study. J Shoulder Elbow Surg 31:561–570. https://doi.org/10.1016/j.jse.2021.08.035. (PMID: 10.1016/j.jse.2021.08.03534624464)
Cabarcas BC, Cvetanovich GL, Gowd AK et al (2019) Accuracy of patient-specific instrumentation in shoulder arthroplasty: a systematic review and meta-analysis. JSES Open Access 3:117–129. https://doi.org/10.1016/j.jses.2019.07.002. (PMID: 10.1016/j.jses.2019.07.002317093516834995)
Thompson MJ, Consul D, Umbel BD, Berlet GC (2021) Accuracy of weightbearing CT scans for patient-specific instrumentation in total ankle arthroplasty. Foot Ankle Orthop 6:24730114211061492. https://doi.org/10.1177/24730114211061493. (PMID: 10.1177/24730114211061493)
Poliakov A, Pakhaliuk V, Popov VL (2020) Current trends in improving of artificial joints design and technologies for their arthroplasty. Front Mech Eng 6:. https://doi.org/10.3389/fmech.2020.00004.
Della Valle AG, Padgett DE, Salvati EA (2005) Preoperative planning for primary total hip arthroplasty. J Am Acad Orthop Surg 13:455–462. https://doi.org/10.5435/00124635-200511000-00005. (PMID: 10.5435/00124635-200511000-0000516272270)
Hao KA, Sutton CD, Wright TW et al (2022) Influence of glenoid wear pattern on glenoid component placement accuracy in shoulder arthroplasty. JSES Int 6:200–208. https://doi.org/10.1016/j.jseint.2021.11.021. (PMID: 10.1016/j.jseint.2021.11.021352529148888204)
Laver L, Garrigues GE (2014) Avoiding superior tilt in reverse shoulder arthroplasty: a review of the literature and technical recommendations. J Shoulder Elbow Surg 23:1582–1590. https://doi.org/10.1016/j.jse.2014.06.029. (PMID: 10.1016/j.jse.2014.06.02925220202)
Bagley JJ, Della Rocca GJ, Smith MJ, Kim HM (2021) Optimal prosthesis sizing for radial head arthroplasty: a review of current evidence and guidelines. JBJS Rev 9:. https://doi.org/10.2106/JBJS.RVW.20.00178.
Tanzer M, Makhdom AM (2016) Preoperative planning in primary total knee arthroplasty. J Am Acad Orthop Surg 24:220–230. https://doi.org/10.5435/JAAOS-D-14-00332. (PMID: 10.5435/JAAOS-D-14-0033226990712)
Lecerf G, Fessy MH, Philippot R et al (2009) Femoral offset: anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty. Orthop Traumatol Surg Res 95:210–219. https://doi.org/10.1016/j.otsr.2009.03.010. (PMID: 10.1016/j.otsr.2009.03.01019423418)
Crooijmans HJA, Laumen AMRP, van Pul C, van Mourik JBA (2009) A new digital preoperative planning method for total hip arthroplasties. Clin Orthop Relat Res 467:909–916. https://doi.org/10.1007/s11999-008-0486-y. (PMID: 10.1007/s11999-008-0486-y18781367)
Carli A, Jerabek S (2015) Principles of design and fixation. Semin Musculoskelet Radiol 19:003–011. https://doi.org/10.1055/s-0034-1396762. (PMID: 10.1055/s-0034-1396762)
Wu X, Zhou Y, Shao H et al (2023) Robotic-assisted revision total joint arthroplasty: a state-of-the-art scoping review. EFORT Open Rev 8:18–25. https://doi.org/10.1530/EOR-22-0105. (PMID: 10.1530/EOR-22-0105367056159969009)
MacDessi SJ, Griffiths-Jones W, Harris IA et al (2021) Coronal plane alignment of the knee (CPAK) classification. Bone Joint J 103-B:329–337. https://doi.org/10.1302/0301-620X.103B2.BJJ-2020-1050.R1. (PMID: 10.1302/0301-620X.103B2.BJJ-2020-1050.R1335177407954147)
Lilley BM, Lachance A, Peebles AM et al (2022) What is the deviation in 3D preoperative planning software? A systematic review of concordance between plan and actual implant in reverse total shoulder arthroplasty. J Shoulder Elbow Surg 31:1073–1082. https://doi.org/10.1016/j.jse.2021.12.006. (PMID: 10.1016/j.jse.2021.12.00635017079)
Matsuo T, Iwamoto T, Suzuki T (2022) Accuracy of computed tomography-based three-dimensional preoperative planning for total wrist arthroplasty. J Hand Surg Eur Vol 17531934221136420.
Johns WL, Layon D, Golladay GJ et al (2020) Preoperative risk factor screening protocols in total joint arthroplasty: a systematic review. J Arthroplasty 35:3353–3363. https://doi.org/10.1016/j.arth.2020.05.074. (PMID: 10.1016/j.arth.2020.05.07432600816)
Smith JBV, Bishi H, Wang C et al (2021) The accuracy and reliability of preoperative digital 2D templating in prosthesis size prediction in uncemented versus cemented total hip arthroplasty: a systematic review and meta-analysis. EFORT Open Rev 6:1020–1039. https://doi.org/10.1302/2058-5241.6.210048. (PMID: 10.1302/2058-5241.6.210048349092228631246)
Lambrechts A, Ganapathi M, Wirix-Speetjens R (2020) Clinical evaluation of artificial intelligence based preoperative plans for total knee arthroplasty. pp 169–163.
Vigdorchik JM, Sharma AK, Jerabek SA et al (2021) Templating for total hip arthroplasty in the modern age. J Am Acad Orthop Surg 29:e208–e216. https://doi.org/10.5435/JAAOS-D-20-00693. (PMID: 10.5435/JAAOS-D-20-0069333543909)
Olaiya OR, Nadeem I, Horner NS et al (2020) Templating in shoulder arthroplasty – a comparison of 2D CT to 3D CT planning software: a systematic review. Shoulder Elbow 12:303–314. https://doi.org/10.1177/1758573219888780. (PMID: 10.1177/175857321988878033123220)
Iwamoto T, Suzuki T, Oki S et al (2018) Computed tomography–based 3-dimensional preoperative planning for unlinked total elbow arthroplasty. J Shoulder Elbow Surg 27:1792–1799. https://doi.org/10.1016/j.jse.2018.04.013. (PMID: 10.1016/j.jse.2018.04.01329853345)
Bishi H, Smith JBV, Asopa V et al (2022) Comparison of the accuracy of 2D and 3D templating methods for planning primary total hip replacement: a systematic review and meta-analysis. EFORT Open Rev 7:70–83. https://doi.org/10.1530/EOR-21-0060. (PMID: 10.1530/EOR-21-0060350764138788155)
Rechenmacher AJ, Goltz DE, Wickman JR et al (2022) Concordance of preoperative 3D templating in stemless anatomic total shoulder arthroplasty. J Am Acad Orthop Surg 30:e1269–e1278. https://doi.org/10.5435/JAAOS-D-22-00309. (PMID: 10.5435/JAAOS-D-22-0030936027052)
Iannotti JP, Weiner S, Rodriguez E et al (2015) Three-dimensional imaging and templating improve glenoid implant positioning. J Bone Joint Surg Am 97:651–658. https://doi.org/10.2106/JBJS.N.00493. (PMID: 10.2106/JBJS.N.0049325878309)
Pietrzak JRT, Rowan FE, Kayani B et al (2019) Preoperative CT-based three-dimensional templating in robot-assisted total knee arthroplasty more accurately predicts implant sizes than two-dimensional templating. J Knee Surg 32:642–648. https://doi.org/10.1055/s-0038-1666829. (PMID: 10.1055/s-0038-166682930068010)
Shukla DR, McLaughlin RJ, Lee J et al (2020) Automated three-dimensional measurements of version, inclination, and subluxation. Shoulder Elbow 12:31–37. https://doi.org/10.1177/1758573218825480. (PMID: 10.1177/175857321882548032010231)
Sanchez-Sotelo J (2023) Computer-assisted planning for revision shoulder arthroplasty. Seminars in Arthroplasty JSES 1–7. https://doi.org/10.1053/j.sart.2023.03.005.
Wu D, Chai W, Liu X et al (2021) Study on artificial intelligence-based algorithm for acetabular cup in total hip arthroplasty. Chin J Orthopaedics 41:176–185. https://doi.org/10.3760/cma.j.cn121113-20201110-00653. (PMID: 10.3760/cma.j.cn121113-20201110-00653)
Chen X, Wang Y, Ma R et al (2022) Validation of CT-based three-dimensional preoperative planning in comparison with acetate templating for primary total hip arthroplasty. Orthop Surg 14:1152–1160. https://doi.org/10.1111/os.13298. (PMID: 10.1111/os.13298355246439163964)
Huo J, Huang G, Han D et al (2021) Value of 3D preoperative planning for primary total hip arthroplasty based on artificial intelligence technology. J Orthop Surg Res 16:156. https://doi.org/10.1186/s13018-021-02294-9. (PMID: 10.1186/s13018-021-02294-9336271497903792)
Wu D, Liu X, Zhang Y et al (2020) Research and application of artificial intelligence based three-dimensional preoperative planning system for total hip arthroplasty. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 34:1077–1084. https://doi.org/10.7507/1002-1892.202005007. (PMID: 10.7507/1002-1892.20200500732929897)
Chen X, Liu X, Wang Y, et al (2022) Development and validation of an artificial intelligence preoperative planning system for total hip arthroplasty. Front Med (Lausanne) 9:. https://doi.org/10.3389/fmed.2022.841202.
Liu H, Qian H, Zhao J (2015) Automatic extraction of 3D anatomical feature curves of hip bone models reconstructed from CT images. Biomed Mater Eng 26:S1297–S1314. https://doi.org/10.3233/BME-151428. (PMID: 10.3233/BME-15142826405891)
Liu W, Wang Y, Jiang T, et al (2020) Landmarks detection with anatomical constraints for total hip arthroplasty preoperative measurements. In: Martel AL, Abolmaesumi P, Stoyanov D, et al (eds) Lecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Science and Business Media Deutschland GmbH, pp 670–679.
La Barbera L, Larson AN, Rawlinson J, Aubin CE (2021) In silico patient-specific optimization of correction strategies for thoracic adolescent idiopathic scoliosis. Clin Biomech 81:105200. https://doi.org/10.1016/j.clinbiomech.2020.105200. (PMID: 10.1016/j.clinbiomech.2020.105200)
La Barbera L, Larson AN, Aubin CE (2021) How do spine instrumentation parameters influence the 3D correction of thoracic adolescent idiopathic scoliosis? A patient-specific biomechanical study. Clin Biomech 84:105346. https://doi.org/10.1016/j.clinbiomech.2021.105346. (PMID: 10.1016/j.clinbiomech.2021.105346)
Siddique N, Paheding S, Elkin CP, Devabhaktuni V (2021) U-net and its variants for medical image segmentation: a review of theory and applications. IEEE Access 82031–82057. https://doi.org/10.1109/ACCESS.2021.3086020.
Patton DM, Henning EN, Goulet RW, et al (2021) Deep learning-based segmentation of high-resolution computed tomography image data outperforms commonly used automatic bone segmentation methods. 1–25. https://doi.org/10.1101/2021.07.27.453890.
Ko S, Pareek A, Ro DH et al (2022) Artificial intelligence in orthopedics: three strategies for deep learning with orthopedic specific imaging. Knee Surg Sports Traumatol Arthrosc 30:758–761. https://doi.org/10.1007/s00167-021-06838-8. (PMID: 10.1007/s00167-021-06838-835022826)
Page MJ, Moher D, Bossuyt PM et al (2021) PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 372:n160. https://doi.org/10.1136/bmj.n160. (PMID: 10.1136/bmj.n160337819938005925)
Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71. (PMID: 10.1136/bmj.n71337820578005924)
Tricco AC, Lillie E, Zarin W et al (2018) PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 169:467–473. https://doi.org/10.7326/M18-0850. (PMID: 10.7326/M18-085030178033)
Tricco AC, Lillie E, Zarin W et al (2018) Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist section. Ann Intern Med 169:11–12. https://doi.org/10.7326/M18-0850.2. (PMID: 10.7326/M18-0850.2)
Arksey H, O’Malley L (2005) Scoping studies: towards a methodological framework. Int J Soc Res Methodol Theory Practice 8:19–32. https://doi.org/10.1080/1364557032000119616. (PMID: 10.1080/1364557032000119616)
McKenzie JE, Brennan SE, Ryan RE et al (2019) Defining the criteria for including studies and how they will be grouped for the synthesis. In: Cochrane handbook for systematic reviews of interventions. Wiley, pp 33–65.
Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46. https://doi.org/10.1177/001316446002000104. (PMID: 10.1177/001316446002000104)
Maimaitiyiming M, Wusiman Y, Sun R, Abulaiti A (2023) Application of artificial intelligence preoperative planning system in total hip arthroplasty for adult developmental dysplasia of the hip. Chin J Reparative Reconstruct Surg 37:25–30. https://doi.org/10.7507/1002-1892.202209098. (PMID: 10.7507/1002-1892.202209098)
Xia T, Liu X, Liu J et al (2021) Artificial intelligence assisted total hip arthroplasty for patients with Crowe type IV developmental dysplasia of the hip. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 35:1265–1272. https://doi.org/10.7507/1002-1892.202106103. (PMID: 10.7507/1002-1892.20210610334651479)
Lambrechts A, Wirix-Speetjens R, Maes F, Van Huffel S (2022) Artificial intelligence based patient-specific preoperative planning algorithm for total knee arthroplasty. Front Robot AI 9:. https://doi.org/10.3389/frobt.2022.840282.
Ding X, Zhang B, Li W et al (2021) Value of preoperative three-dimensional planning software (AI-HIP) in primary total hip arthroplasty: a retrospective study. J Int Med Res 49:3000605211058874. https://doi.org/10.1177/03000605211058874. (PMID: 10.1177/0300060521105887434775845)
Barton C, Noshchenko A, Patel V et al (2016) Early experience and initial outcomes with patient-specific spine rods for adult spinal deformity. Orthopedics 39:79–86. https://doi.org/10.3928/01477447-20160304-04. (PMID: 10.3928/01477447-20160304-0427023415)
Branche K, Netsanet R, Noshchenko A et al (2020) Radius of curvature in patient-specific short rod constructs versus standard pre-bent rods. Int J Spine Surg 14:944–948. https://doi.org/10.14444/7143. (PMID: 10.14444/714333560254)
Hernigou P, Tannyeres P, Barbier O, Chenaie P (2023) Revision hip arthroplasty dislocation risk calculator: when to select dual mobility, large heads, constrained liners, or a standard head size? Testing one hundred thousand hip revisions with artificial intelligence. Int Orthop 47:2003–2011. https://doi.org/10.1007/s00264-023-05856-0. (PMID: 10.1007/s00264-023-05856-037326696)
Schwarz GM, Simon S, Mitterer JA et al (2023) Can an artificial intelligence powered software reliably assess pelvic radiographs? Int Orthop 47:945–953. https://doi.org/10.1007/s00264-023-05722-z. (PMID: 10.1007/s00264-023-05722-z36799971)
Lopez CD, Gazgalis A, Boddapati V et al (2021) Artificial learning and machine learning decision guidance applications in total hip and knee arthroplasty: a systematic review. Arthroplast Today 11:103–112. https://doi.org/10.1016/j.artd.2021.07.012. (PMID: 10.1016/j.artd.2021.07.012345227388426157)
Yang W, Gao T, Liu X et al (2023) Clinical application of artificial intelligence-assisted three-dimensional planning in direct anterior approach hip arthroplasty. Int Orthop. https://doi.org/10.1007/s00264-023-06029-9. (PMID: 10.1007/s00264-023-06029-938099959)
فهرسة مساهمة: Keywords: 3D imaging; 3D templating; Arthroplasty; Artificial intelligence; Surgical planning; Total hip arthroplasty
تواريخ الأحداث: Date Created: 20240115 Date Completed: 20240807 Latest Revision: 20240807
رمز التحديث: 20240808
DOI: 10.1007/s00264-024-06088-6
PMID: 38224400
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-5195
DOI:10.1007/s00264-024-06088-6