دورية أكاديمية

Important role of pore-filling mechanism in separating naproxen from water by micro-mesoporous carbonaceous material.

التفاصيل البيبلوغرافية
العنوان: Important role of pore-filling mechanism in separating naproxen from water by micro-mesoporous carbonaceous material.
المؤلفون: Arslan Y; Faculty of Arts and Science, Nanoscience and Nanotechnology Department, Burdur Mehmet Akif Ersoy University, Burdur, Turkey., Tomul F; Faculty of Arts and Science, Chemistry Department, Burdur Mehmet Akif Ersoy University, Burdur, Turkey., Kınaytürk NK; Faculty of Arts and Science, Nanoscience and Nanotechnology Department, Burdur Mehmet Akif Ersoy University, Burdur, Turkey., Dong NT; Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam., Trak D; Faculty of Arts and Science, Chemistry Department, Burdur Mehmet Akif Ersoy University, Burdur, Turkey., Kabak B; Faculty of Arts and Science, Chemistry Department, Burdur Mehmet Akif Ersoy University, Burdur, Turkey., Tran HN; Center for Energy and Environmental Materials, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh, Vietnam.; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, Vietnam.
المصدر: Water environment research : a research publication of the Water Environment Federation [Water Environ Res] 2024 Jan; Vol. 96 (1), pp. e10966.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Subscription Services on behalf of The Water Environment Foundation Country of Publication: United States NLM ID: 9886167 Publication Model: Print Cited Medium: Internet ISSN: 1554-7531 (Electronic) Linking ISSN: 10614303 NLM ISO Abbreviation: Water Environ Res Subsets: MEDLINE
أسماء مطبوعة: Publication: Hoboken, NJ : Wiley Subscription Services on behalf of The Water Environment Foundation
Original Publication: Alexandria, VA : The Federation, c1992-
مواضيع طبية MeSH: Water*/chemistry , Water Pollutants, Chemical*/chemistry, Naproxen ; Sodium Chloride ; Hydrogen-Ion Concentration ; Thermodynamics ; Adsorption ; Kinetics
مستخلص: Commercial micro-mesoporous carbonaceous material (MCM; 56.8% mesopores) was applied for investigating the removal phenomenon of naproxen drug in aqueous solutions through batch adsorption experiments. Results demonstrated that the adsorption capacity of MCM to naproxen was slightly affected by different pH eq (2.0-11) and ionic strength (0-1 M NaCl). Adsorption kinetics, isotherms, thermodynamics, and mechanisms were evaluated at pH 7.0. Adsorption kinetics indicated the rate constants for adsorption (0.2 × 10 -3  L/(mg × min) and desorption (0.076/min) and the adsorption equilibrium constant (2.6 × 10 -3  L/mg). Adsorption isotherm showed that MCM exhibited a high-affinity adsorption capacity to naproxen (even at low concentrations) and its Langmuir maximum adsorption capacity (Q max ) was 252.7 mg/g at 25°C. Adsorption thermodynamics proved that the adsorption process was endothermic and physisorption (ΔH° = 9.66 kJ/mol). The analysis result of pore size distribution demonstrated that the internal pore structure of MCM was appropriate for adsorbing naproxen molecules. Pore-filing mechanism (pore diffusion phenomenon) was confirmed by a considerable decrease in BET-surface area (585 m 2 /g) and total pore volume (0.417 cm 3 /g) of MCM after adsorbing naproxen (~1000 mg/L and pH 7.0) at 5 min (341 and 0.256), 60 min (191 and 0.205), 120 min (183 and 0.193), 360 min (144 and 0.175), and 24 h (71.6 m 2 /g and 0.123 cm 3 /g, respectively). The pore diffusion occurred rapidly (even at the initial adsorption period of 5 min). The FTIR technique was applied to identify the existence of C-H···π and n-π interaction. π-π interaction (evaluated through I D /I G ratio and C=C band) played a minor contribution in adsorption mechanisms. The I D /I G ratio (determined by the Raman technique) of MCM before adsorption (1.195) was similar to that after adsorption (1.190), and the wavenumber (C=C band; its FTIR spectrum) slightly shifted from 1638 to 1634 cm -1 after adsorption. A decrease in the Q max value of MCM from 249 to 217 (H 2 O 2 -oxidized MCM) or to 224 mg/g (HNO 3 -oxidized MCM) confirmed the presence of π-π interaction. Electrostatic attraction was a minor contribution. MCM can serve as a promising material for removing naproxen from water environment through a pore-filling mechanism. PRACTITIONER POINTS: Pore-filling mechanism was proposed by comparing textural properties of MCM before and after adsorbing naproxen. C-H···π and n-π interactions were identified via FTIR technique. π-π interaction was observed by FTIR and Raman techniques. Oxidation of MCM with HNO 3 or H 2 O 2 was a helpful method to explore π-π interaction. Electrostatic attraction was explained through studies: effects of pH and NaCl along with desorption.
(© 2024 Water Environment Federation.)
References: Ayati, A., Tanhaei, B., Beiki, H., Krivoshapkin, P., Krivoshapkina, E., & Tracey, C. (2023). Insight into the adsorptive removal of ibuprofen using porous carbonaceous materials: A review. Chemosphere, 323, 138241. https://doi.org/10.1016/j.chemosphere.2023.138241.
Azizian, S. (2004). Kinetic models of sorption: A theoretical analysis. Journal of Colloid and Interface Science, 276, 47-52. https://doi.org/10.1016/j.jcis.2004.03.048.
Beňová, E., Zeleňák, V., Halamová, D., Almáši, M., Petrul'ová, V., Psotka, M., Zeleňáková, A., Bačkor, M., & Hornebecq, V. (2017). A drug delivery system based on switchable photo-controlled p-coumaric acid derivatives anchored on mesoporous silica. Journal of Materials Chemistry B, 5, 817-825. https://doi.org/10.1039/C6TB02040B.
Bernal, V., Erto, A., Giraldo, L., & Moreno-Piraján, J. C. (2017). Effect of solution pH on the adsorption of paracetamol on chemically modified activated carbons. Molecules, 22, 1032. https://doi.org/10.3390/molecules22071032.
Carvajal-Bernal, A. M., Gómez-Granados, F., Giraldo, L., & Moreno-Piraján, J. C. (2018). A study of the interactions of activated carbon-phenol in aqueous solution using the determination of immersion enthalpy. Applied Sciences, 8, 843. https://doi.org/10.3390/app8060843.
Feng, X., Qiu, B., Dang, Y., & Sun, D. (2021). Enhanced adsorption of naproxen from aquatic environments by β-cyclodextrin-immobilized reduced graphene oxide. Chemical Engineering Journal, 412, 128710. https://doi.org/10.1016/j.cej.2021.128710.
Georgin, J., da Boit Martinello, K., Franco, D. S. P., Netto, M. S., Piccilli, D. G. A., Foletto, E. L., Silva, L. F. O., & Dotto, G. L. (2021). Efficient removal of naproxen from aqueous solution by highly porous activated carbon produced from Grapetree (Plinia cauliflora) fruit peels. Journal of Environmental Chemical Engineering, 9, 106820. https://doi.org/10.1016/j.jece.2021.106820.
Guo, Z., Liu, X.-M., Ma, L., Li, J., Zhang, H., Gao, Y.-P., & Yuan, Y. (2013). Effects of particle morphology, pore size and surface coating of mesoporous silica on Naproxen dissolution rate enhancement.Colloids and Surfaces B: Biointerfaces, 101, 228-235. https://doi.org/10.1016/j.colsurfb.2012.06.026.
Hasan, Z., Choi, E.-J., & Jhung, S. H. (2013). Adsorption of naproxen and clofibric acid over a metal-organic framework MIL-101 functionalized with acidic and basic groups. Chemical Engineering Journal, 219, 537-544. https://doi.org/10.1016/j.cej.2013.01.002.
Hasan, Z., Jeon, J., & Jhung, S. H. (2012). Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks. Journal of Hazardous Materials, 209-210, 151-157. https://doi.org/10.1016/j.jhazmat.2012.01.005.
He, T., Kong, X.-J., Bian, Z.-X., Zhang, Y.-Z., Si, G.-R., Xie, L.-H., Wu, X.-Q., Huang, H., Chang, Z., Bu, X.-H., Zaworotko, M. J., Nie, Z.-R., & Li, J.-R. (2022). Trace removal of benzene vapour using double-walled metal-dipyrazolate frameworks. Nature Materials, 21, 689-695. https://doi.org/10.1038/s41563-022-01237-x.
Iovino, P., Canzano, S., Capasso, S., Erto, A., & Musmarra, D. (2015). A modeling analysis for the assessment of ibuprofen adsorption mechanism onto activated carbons. Chemical Engineering Journal, 277, 360-367. https://doi.org/10.1016/j.cej.2015.04.097.
Jedynak, K., Szczepanik, B., Rędzia, N., Słomkiewicz, P., Kolbus, A., & Rogala, P. (2019). Ordered mesoporous carbons for adsorption of paracetamol and non-steroidal anti-inflammatory drugs: Ibuprofen and naproxen from aqueous solutions. Watermark, 11, 1099. https://doi.org/10.3390/w11051099.
Jung, C., Boateng, L. K., Flora, J. R. V., Oh, J., Braswell, M. C., Son, A., & Yoon, Y. (2015). Competitive adsorption of selected non-steroidal anti-inflammatory drugs on activated biochars: Experimental and molecular modeling study. Chemical Engineering Journal, 264, 1-9. https://doi.org/10.1016/j.cej.2014.11.076.
Karami, A., Sabouni, R., & Ghommem, M. (2020). Experimental investigation of competitive co-adsorption of naproxen and diclofenac from water by an aluminum-based metal-organic framework. Journal of Molecular Liquids, 305, 112808. https://doi.org/10.1016/j.molliq.2020.112808.
Karmakar, A., Paul, A., Santos, I. R. M., Santos, P. M. R., Sabatini, E. P., Gurbanov, A. V., Guedes da Silva, M. F. C., & Pombeiro, A. J. L. (2022). Highly efficient adsorptive removal of organic dyes from aqueous solutions using polyaromatic group-containing Zn(II)-based coordination polymers. Crystal Growth & Design, 22, 2248-2265. https://doi.org/10.1021/acs.cgd.1c01343.
Kim, M., Njaramba, L. K., Yoon, Y., Jang, M., & Park, C. M. (2024). Thermally-activated gelatin-chitosan-MOF hybrid aerogels for efficient removal of ibuprofen and naproxen. Carbohydrate Polymers, 324, 121436. https://doi.org/10.1016/j.carbpol.2023.121436.
Kurtulbaş, E., Bilgin, M., Şahin, S., & Bayazit, Ş. S. (2017). Comparison of different polymeric resins for naproxen removal from wastewater. Journal of Molecular Liquids, 241, 633-637. https://doi.org/10.1016/j.molliq.2017.06.070.
Lee, H.-M., Lee, B.-H., An, K.-H., Park, S.-J., & Kim, B.-J. (2020). Facile preparation of activated carbon with optimal pore range for high butane working capacity. Carbon Letters, 30, 297-305. https://doi.org/10.1007/s42823-019-00098-w.
Li, Y., Wang, Y., He, L., Meng, L., Lu, H., & Li, X. (2020). Preparation of poly(4-vinylpyridine)-functionalized magnetic Al-MOF for the removal of naproxen from aqueous solution. Journal of Hazardous Materials, 383, 121144. https://doi.org/10.1016/j.jhazmat.2019.121144.
Lima, E. C., Naushad, M., Reis, G. S. d., Dotto, G. L., Pavan, F. A., Guleria, A., Seliem, M. K., & Sher, F. (2022). Chapter 7-Production of carbon-based adsorbents from lignocellulosic biomass. In I. Anastopoulos, E. Lima, L. Meili, & D. Giannakoudakis (Eds.), Biomass-derived materials for environmental applications (pp. 169-192). Elsevier. https://doi.org/10.1016/B978-0-323-91914-2.00012-X.
López-Cázares, M. I., Isaacs-Páez, E. D., Ascacio-Valdés, J., Aguilar-González, C. N., Rangel-Mendez, J. R., & Chazaro-Ruiz, L. F. (2021). Electro-assisted naproxen adsorption followed by its electrodegradation and simultaneous electroreactivation of the activated carbon electrode. Separation and Purification Technology, 258, 118030. https://doi.org/10.1016/j.seppur.2020.118030.
Meloun, M., Bordovská, S., & Galla, L. (2007). The thermodynamic dissociation constants of four non-steroidal anti-inflammatory drugs by the least-squares nonlinear regression of multiwavelength spectrophotometric pH-titration data. Journal of Pharmaceutical and Biomedical Analysis, 45(4), 552-564. https://doi.org/10.1016/j.jpba.2007.07.029.
Ninh, P. T. T., Ngoc Tuyen, L. T., Dat, N. D., Nguyen, M. L., Dong, N. T., Chao, H.-P., & Tran, H. N. (2023). Two-stage preparation of highly mesoporous carbon for super-adsorption of paracetamol and tetracycline in water: Important contribution of pore filling and π-π interaction. Environmental Research, 218, 114927. https://doi.org/10.1016/j.envres.2022.114927.
Nguyen, D. T., Tran, H. N., Juang, R.-S., Dat, N. D., Tomul, F., Ivanets, A., Woo, S. H., Hosseini-Bandegharaei, A., Nguyen, V. P., & Chao, H.-P. (2020). Adsorption process and mechanism of acetaminophen onto commercial activated carbon. Journal of Environmental Chemical Engineering, 8, 104408. https://doi.org/10.1016/j.jece.2020.104408.
Paunovic, O., Pap, S., Maletic, S., Taggart, M. A., Boskovic, N., & Turk Sekulic, M. (2019). Ionisable emerging pharmaceutical adsorption onto microwave functionalised biochar derived from novel lignocellulosic waste biomass. Journal of Colloid and Interface Science, 547, 350-360. https://doi.org/10.1016/j.jcis.2019.04.011.
Ramos, P., Raczak, B. K., Silvestri, D., & Wacławek, S. (2023). Application of TGA/c-DTA for distinguishing between two forms of naproxen in pharmaceutical preparations. Pharmaceutics, 15, 1689. https://doi.org/10.3390/pharmaceutics15061689.
Smiljanić, D., de Gennaro, B., Izzo, F., Langella, A., Daković, A., Germinario, C., Rottinghaus, G. E., Spasojević, M., & Mercurio, M. (2020). Removal of emerging contaminants from water by zeolite-rich composites: A first approach aiming at diclofenac and ketoprofen. Microporous and Mesoporous Materials, 298, 110057. https://doi.org/10.1016/j.micromeso.2020.110057.
Sun, W., Li, H., Li, H., Li, S., & Cao, X. (2019). Adsorption mechanisms of ibuprofen and naproxen to UiO-66 and UiO-66-NH2: Batch experiment and DFT calculation. Chemical Engineering Journal, 360, 645-653. https://doi.org/10.1016/j.cej.2018.12.021.
Tang, Y., Yang, K., Zhao, S., Chen, Q., Qin, L., & Qin, B. (2023). Evaluation of solubility, physicochemical properties, and cytotoxicity of naproxen-based ionic liquids. ACS Omega, 8, 8332-8340. https://doi.org/10.1021/acsomega.2c07044.
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure and Applied Chemistry, 87, 1051-1069. https://doi.org/10.1515/pac-2014-1117.
Tomul, F., Arslan, Y., Kabak, B., Trak, D., Kendüzler, E., Lima, E. C., & Tran, H. N. (2020). Peanut shells-derived biochars prepared from different carbonization processes: Comparison of characterization and mechanism of naproxen adsorption in water. Science of the Total Environment, 726, 137828. https://doi.org/10.1016/j.scitotenv.2020.137828.
Tran, H. N., Wang, Y.-F., You, S.-J., & Chao, H.-P. (2017). Insights into the mechanism of cationic dye adsorption on activated charcoal: The importance of π-π interactions. Process Safety and Environmental Protection, 107, 168-180. https://doi.org/10.1016/j.psep.2017.02.010.
Tran, H. N., Wen, Y.-C., Wang, Y.-F., & You, S.-J. (2019). Highly efficient removal of hazardous aromatic pollutants by micro-nano spherical carbons synthesized from different chemical activation methods: A comparison study. Environmental Technology, 40, 1376-1391. https://doi.org/10.1080/09593330.2017.1422551.
Turk Sekulic, M., Boskovic, N., Milanovic, M., Grujic Letic, N., Gligoric, E., & Pap, S. (2019). An insight into the adsorption of three emerging pharmaceutical contaminants on multifunctional carbonous adsorbent: Mechanisms, modelling and metal coadsorption. Journal of Molecular Liquids, 284, 372-382. https://doi.org/10.1016/j.molliq.2019.04.020.
Turk Sekulic, M., Boskovic, N., Slavkovic, A., Garunovic, J., Kolakovic, S., & Pap, S. (2019). Surface functionalised adsorbent for emerging pharmaceutical removal: Adsorption performance and mechanisms. Process Safety and Environmental Protection, 125, 50-63. https://doi.org/10.1016/j.psep.2019.03.007.
Wei, F., Zhu, Y., He, T., Zhu, S., Wang, T., Yao, C., Yu, C., Huang, P., Li, Y., Zhao, Q., & Song, W. (2022). Insights into the pH-dependent adsorption behavior of ionic dyes on phosphoric acid-activated biochar. ACS Omega, 7, 46288-46302. https://doi.org/10.1021/acsomega.2c04799.
Yu, S., Wang, X., Yao, W., Wang, J., Ji, Y., Ai, Y., Alsaedi, A., Hayat, T., & Wang, X. (2017). Macroscopic, spectroscopic, and theoretical investigation for the interaction of phenol and naphthol on reduced graphene oxide. Environmental Science & Technology, 51, 3278-3286. https://doi.org/10.1021/acs.est.6b06259.
Zauška, Ľ., Beňová, E., Urbanová, M., Brus, J., Zeleňák, V., Hornebecq, V., & Almáši, M. (2022). Adsorption and release properties of drug delivery system naproxen-SBA-15: Effect of surface polarity, sodium/acid drug form and pH. Journal of Functional Biomaterials, 13, 275. https://doi.org/10.3390/jfb13040275.
Zhuang, S., Chen, R., Liu, Y., & Wang, J. (2020). Magnetic COFs for the adsorptive removal of diclofenac and sulfamethazine from aqueous solution: Adsorption kinetics, isotherms study and DFT calculation. Journal of Hazardous Materials, 385, 121596. https://doi.org/10.1016/j.jhazmat.2019.121596.
فهرسة مساهمة: Keywords: activated carbon; adsorption; emerging pollutant; pore diffusion; surface area; water treatment
المشرفين على المادة: 059QF0KO0R (Water)
57Y76R9ATQ (Naproxen)
451W47IQ8X (Sodium Chloride)
0 (Water Pollutants, Chemical)
تواريخ الأحداث: Date Created: 20240116 Date Completed: 20240117 Latest Revision: 20240124
رمز التحديث: 20240125
DOI: 10.1002/wer.10966
PMID: 38226502
قاعدة البيانات: MEDLINE
الوصف
تدمد:1554-7531
DOI:10.1002/wer.10966