دورية أكاديمية

Transcriptional profile of ribosome-associated quality control components and their associated phenotypes in mammalian cells.

التفاصيل البيبلوغرافية
العنوان: Transcriptional profile of ribosome-associated quality control components and their associated phenotypes in mammalian cells.
المؤلفون: Dos Santos OAL; Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil., Carneiro RL; Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil., Requião RD; Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil., Ribeiro-Alves M; Fundação Oswaldo Cruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, 21040-900, Brazil., Domitrovic T; Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil., Palhano FL; Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. palhano@bioqmed.ufrj.br.
المصدر: Scientific reports [Sci Rep] 2024 Jan 16; Vol. 14 (1), pp. 1439. Date of Electronic Publication: 2024 Jan 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Saccharomyces cerevisiae*/metabolism , Saccharomyces cerevisiae Proteins*/metabolism, Animals ; Humans ; Protein Biosynthesis ; Ubiquitination ; Ribosomes/genetics ; Ribosomes/metabolism ; RNA, Messenger/genetics ; RNA, Messenger/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Mammals/metabolism
مستخلص: During protein synthesis, organisms detect translation defects that induce ribosome stalling and result in protein aggregation. The Ribosome-associated Quality Control (RQC) complex, comprising TCF25, LTN1, and NEMF, is responsible for identifying incomplete protein products from unproductive translation events, targeting them for degradation. Although RQC disruption causes adverse effects on vertebrate neurons, data regarding mRNA/protein expression and regulation across tissues are lacking. Employing high-throughput methods, we analyzed public datasets to explore RQC gene expression and phenotypes. Our findings revealed widespread expression of RQC components in human tissues; however, silencing of RQC yielded only mild negative effects on cell growth. Notably, TCF25 exhibited elevated mRNA levels that were not reflected in the protein content. We experimentally demonstrated that this disparity arose from post-translational protein degradation by the proteasome. Additionally, we observed that cellular aging marginally influenced RQC expression, leading to reduced mRNA levels in specific tissues. Our results suggest the necessity of RQC expression in all mammalian tissues. Nevertheless, when RQC falters, alternative mechanisms seem to compensate, ensuring cell survival under nonstress conditions.
(© 2024. The Author(s).)
References: Yip, M. C. J. & Shao, S. Detecting and rescuing stalled ribosomes. Trends Biochem. Sci. https://doi.org/10.1016/j.tibs.2021.03.008 (2021). (PMID: 10.1016/j.tibs.2021.03.008339669398487456)
Howard, C. J. & Frost, A. Ribosome-associated quality control and CAT tailing. Crit. Rev. Biochem. Mol. Biol. https://doi.org/10.1080/10409238.2021.1938507 (2021). (PMID: 10.1080/10409238.2021.193850734233554)
Moore, S. D. & Sauer, R. T. The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem. https://doi.org/10.1146/annurev.biochem.75.103004.142733 (2007). (PMID: 10.1146/annurev.biochem.75.103004.14273317291191)
Juszkiewicz, S. et al. ZNF598 is a quality control sensor of collided ribosomes. Mol. Cell 72, 469-481.e7 (2018). (PMID: 30293783622447710.1016/j.molcel.2018.08.037)
Lykke-Andersen, J. & Bennett, E. J. Protecting the proteome: Eukaryotic cotranslational quality control pathways. J. Cell Biol. https://doi.org/10.1083/jcb.201311103 (2014). (PMID: 10.1083/jcb.201311103245358223926952)
Losson, R. & Lacroute, F. Interference of nonsense mutations with eukaryotic messenger RNA stability. Proc. Natl. Acad. Sci. USA 76, 5134–5137 (1979). (PMID: 38843141309410.1073/pnas.76.10.5134)
Maquat, L. E., Kinniburgh, A. J., Rachmilewitz, E. A. & Ross, J. Unstable beta-globin mRNA in mRNA-deficient beta o thalassemia. Cell 27, 543–553 (1981). (PMID: 610120610.1016/0092-8674(81)90396-2)
Van Hoof, A., Frischmeyer, P. A., Dietz, H. C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262–2264 (2002). (PMID: 1191011010.1126/science.1067272)
Frischmeyer, P. A. et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258–2261 (2002). (PMID: 1191010910.1126/science.1067338)
Ito-Harashima, S., Kuroha, K., Tatematsu, T. & Inada, T. Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. Genes Dev. 21, 519–524 (2007). (PMID: 17344413182089310.1101/gad.1490207)
Lu, J. & Deutsch, C. Electrostatics in the ribosomal tunnel modulate chain elongation rates. J. Mol. Biol. 384, 73–86 (2008). (PMID: 18822297265521310.1016/j.jmb.2008.08.089)
Tsuboi, T. et al. Dom34: Hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3′ end of aberrant mRNA. Mol. Cell 46, 518–529 (2012). (PMID: 2250342510.1016/j.molcel.2012.03.013)
Joazeiro, C. A. P. Ribosomal stalling during translation: Providing substrates for ribosome-associated protein quality control. Annu. Rev. Cell Dev. Biol. https://doi.org/10.1146/annurev-cellbio-111315-125249 (2017). (PMID: 10.1146/annurev-cellbio-111315-12524928715909)
Garzia, A. et al. The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs. Nat. Commun. 8, 16056 (2017). (PMID: 28685749550434710.1038/ncomms16056)
Guydosh, N. R. & Green, R. Translation of poly(A) tails leads to precise mRNA cleavage. RNA 23, 749–761 (2017). (PMID: 28193672539318310.1261/rna.060418.116)
Barros, G. C. et al. Rqc1 and other yeast proteins containing highly positively charged sequences are not targets of the RQC complex. J. Biol. Chem. 296, 100586 (2021). (PMID: 33774050810291010.1016/j.jbc.2021.100586)
Filbeck, S., Cerullo, F., Pfeffer, S. & Joazeiro, C. A. P. Ribosome-associated quality-control mechanisms from bacteria to humans. Mol. Cell 82, 1451–1466 (2022). (PMID: 35452614903405510.1016/j.molcel.2022.03.038)
Ikeuchi, K. et al. Collided ribosomes form a unique structural interface to induce Hel2-driven quality control pathways. EMBO J. 38, e100276 (2019). (PMID: 30609991639615510.15252/embj.2018100276)
Meydan, S. & Guydosh, N. R. A cellular handbook for collided ribosomes: Surveillance pathways and collision types. Curr. Genet. https://doi.org/10.1007/s00294-020-01111-w (2021). (PMID: 10.1007/s00294-020-01111-w33044589)
Simms, C. L., Yan, L. L. & Zaher, H. S. Ribosome collision is critical for quality control during no-go decay. Mol. Cell 68, 361-373.e5 (2017). (PMID: 28943311565975710.1016/j.molcel.2017.08.019)
Matsuo, Y. & Inada, T. The ribosome collision sensor Hel2 functions as preventive quality control in the secretory pathway. Cell Rep. 34, 108877 (2021). (PMID: 3376135310.1016/j.celrep.2021.108877)
Matsuo, Y. et al. RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1. Nat. Struct. Mol. Biol. 27, 323–332 (2020). (PMID: 3220349010.1038/s41594-020-0393-9)
Sundaramoorthy, E. et al. ZNF598 and RACK1 regulate mammalian ribosome-associated quality control function by mediating regulatory 40S ribosomal ubiquitylation. Mol. Cell 65, 751-760.e4 (2017). (PMID: 28132843532113610.1016/j.molcel.2016.12.026)
Juszkiewicz, S., Speldewinde, S. H., Wan, L., Svejstrup, J. Q. & Hegde, R. S. The ASC-1 complex disassembles collided ribosomes. Mol. Cell 79, 603-614.e8 (2020). (PMID: 32579943744797810.1016/j.molcel.2020.06.006)
Brandman, O. et al. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151, 1042–1054 (2012). (PMID: 23178123353496510.1016/j.cell.2012.10.044)
Defenouillère, Q. & Fromont-Racine, M. The ribosome-bound quality control complex: From aberrant peptide clearance to proteostasis maintenance. Curr. Genet. https://doi.org/10.1007/s00294-017-0708-5 (2017). (PMID: 10.1007/s00294-017-0708-528528489)
Winz, M. L., Peil, L., Turowski, T. W., Rappsilber, J. & Tollervey, D. Molecular interactions between Hel2 and RNA supporting ribosome-associated quality control. Nat. Commun. 10, 563 (2019). (PMID: 30718516636211010.1038/s41467-019-08382-z)
Shen, P. S. et al. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Science 347, 75–78 (2015). (PMID: 25554787445110110.1126/science.1259724)
Kostova, K. K. et al. CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides. Science 357, 414–417 (2017). (PMID: 28751611567310610.1126/science.aam7787)
Kuroha, K., Zinoviev, A., Hellen, C. U. T. & Pestova, T. V. Release of ubiquitinated and non-ubiquitinated nascent chains from stalled mammalian ribosomal complexes by ANKZF1 and Ptrh1. Mol. Cell 72, 286-302.e8 (2018). (PMID: 30244831634405110.1016/j.molcel.2018.08.022)
Osuna, B. A., Howard, C. J., Subheksha, K. C., Frost, A. & Weinberg, D. E. In vitro analysis of RQC activities provides insights into the mechanism and function of CAT tailing. Elife 6, e27949 (2017). (PMID: 28718767556244210.7554/eLife.27949)
Crabtree, G. R. & Olson, E. N. NFAT signaling: Choreographing the social lives of cells. Cell https://doi.org/10.1016/S0092-8674(02)00699-2 (2002). (PMID: 10.1016/S0092-8674(02)00699-211983154)
Wang, J. et al. The identification of a tumor infiltration CD8+ T-cell gene signature that can potentially improve the prognosis and prediction of immunization responses in papillary renal cell carcinoma. Front. Oncol. 11, 757641 (2021). (PMID: 34858833863140210.3389/fonc.2021.757641)
Cai, Z. et al. hnulp1, a basic helix-loop-helix protein with a novel transcriptional repressive domain, inhibits transcriptional activity of serum response factor. Biochem. Biophys. Res. Commun. 343, 973–981 (2006). (PMID: 1657406910.1016/j.bbrc.2006.02.187)
Zhang, X. et al. Nulp1 alleviates cardiac hypertrophy by suppressing nfat3 transcriptional activity. J. Am. Heart Assoc. 9, e016419 (2020). (PMID: 32805187766079710.1161/JAHA.120.016419)
Chu, J. et al. A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration. Proc. Natl. Acad. Sci. USA 106, 2097–2103 (2009). (PMID: 19196968265011410.1073/pnas.0812819106)
Choe, Y. J. et al. Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature 531, 191–195 (2016). (PMID: 2693422310.1038/nature16973)
Udagawa, T. et al. Failure to degrade CAT-tailed proteins disrupts neuronal morphogenesis and cell survival. Cell Rep. 34, 108599 (2021). (PMID: 3340642310.1016/j.celrep.2020.108599)
Martin, P. B. et al. NEMF mutations that impair ribosome-associated quality control are associated with neuromuscular disease. Nat. Commun. 11, 4625 (2020). (PMID: 32934225749485310.1038/s41467-020-18327-6)
Stein, K. C., Morales-Polanco, F., van der Lienden, J., Rainbolt, T. K. & Frydman, J. Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature 601, 637–642 (2022). (PMID: 35046576891804410.1038/s41586-021-04295-4)
Sinha, N. K. et al. EDF1 coordinates cellular responses to ribosome collisions. Elife 9, e58828 (2020). (PMID: 32744497748612510.7554/eLife.58828)
Juszkiewicz, S. et al. Ribosome collisions trigger cis-acting feedback inhibition of translation initiation. Elife https://doi.org/10.7554/eLife.60038 (2020). (PMID: 10.7554/eLife.60038326572677381030)
Morita, M. et al. A novel 4EHP-GIGYF2 translational repressor complex is essential for mammalian development. Mol. Cell Biol. 32, 3585–3593 (2012). (PMID: 22751931342201210.1128/MCB.00455-12)
Park, J., Park, J., Lee, J. & Lim, C. The trinity of ribosome-associated quality control and stress signaling for proteostasis and neuronal physiology. BMB Rep. https://doi.org/10.5483/BMBRep.2021.54.9.097 (2021). (PMID: 10.5483/BMBRep.2021.54.9.097346747958728543)
Weber, R. et al. 4EHP and GIGYF1/2 Mediate translation-coupled messenger RNA decay. Cell Rep. 33, 108262 (2020). (PMID: 33053355898468210.1016/j.celrep.2020.108262)
Ikeuchi, K. & Inada, T. Ribosome-associated Asc1/RACK1 is required for endonucleolytic cleavage induced by stalled ribosome at the 3′ end of nonstop mRNA. Sci. Rep. 6, 28234 (2016). (PMID: 27312062491156510.1038/srep28234)
Hickey, K. L. et al. GIGYF2 and 4EHP inhibit translation initiation of defective messenger RNAs to assist ribosome-associated quality control. Mol. Cell 79, 272–281 (2020). (PMID: 10.1016/j.molcel.2020.07.007)
Nielsen, M. H., Flygaard, R. K. & Jenner, L. B. Structural analysis of ribosomal RACK1 and its role in translational control. Cell Signal. 35, 272–281 (2017). (PMID: 2816149010.1016/j.cellsig.2017.01.026)
Alagar Boopathy, L. R., Beadle, E., Garcia-Bueno Rico, A. & Vera, M. Proteostasis regulation through ribosome quality control and no-go-decay. Wiley Interdiscip. Rev. RNA https://doi.org/10.1002/wrna.1809 (2023). (PMID: 10.1002/wrna.180937488089)
Iyer, K. V., Müller, M., Tittel, L. S. & Winz, M. L. Molecular highway patrol for ribosome collisions. ChemBioChem https://doi.org/10.1002/cbic.202300264 (2023). (PMID: 10.1002/cbic.20230026437382189)
Wang, D. et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol. Syst. Biol. 15, e8503 (2019). (PMID: 30777892637904910.15252/msb.20188503)
Jiang, L. et al. A quantitative proteome map of the human body. Cell 183, 269-283.e19 (2020). (PMID: 32916130757505810.1016/j.cell.2020.08.036)
Agarwal, V. & Kelley, D. The genetic and biochemical determinants of mRNA degradation rates in mammals. Genome Biol. 23, 245 (2022). (PMID: 36419176968495410.1186/s13059-022-02811-x)
Chothani, S. P. et al. A high-resolution map of human RNA translation. Mol Cell 82, 2885-2899.e8 (2022). (PMID: 3584188810.1016/j.molcel.2022.06.023)
Mathieson, T. et al. Systematic analysis of protein turnover in primary cells. Nat. Commun. 9, 689 (2018). (PMID: 29449567581440810.1038/s41467-018-03106-1)
Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564-576.e16 (2017). (PMID: 28753430566767810.1016/j.cell.2017.06.010)
Collins, R. L. et al. A cross-disorder dosage sensitivity map of the human genome. Cell 185, 3041-3055.e25 (2022). (PMID: 35917817974286110.1016/j.cell.2022.06.036)
Replogle, J. M. et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559-2575.e28 (2022). (PMID: 35688146938047110.1016/j.cell.2022.05.013)
Consortium, Gte. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020). (PMID: 10.1126/science.aaz1776)
Consortium, T. M. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018). (PMID: 10.1038/s41586-018-0590-4)
Vogel, C. & Marcotte, E. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227–232 (2012). (PMID: 22411467365466710.1038/nrg3185)
Greenbaum, D., Colangelo, C., Williams, K. & Gerstein, M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. https://doi.org/10.1186/gb-2003-4-9-117 (2003). (PMID: 10.1186/gb-2003-4-9-11712952525193646)
Maier, T., Güell, M. & Serrano, L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. https://doi.org/10.1016/j.febslet.2009.10.036 (2009). (PMID: 10.1016/j.febslet.2009.10.03619850042)
Wolf, A. S. & Grayhack, E. J. Asc1, homolog of human RACK1, prevents frameshifting in yeast by ribosomes stalled at CGA codon repeats. RNA 21, 935–945 (2015). (PMID: 25792604440880010.1261/rna.049080.114)
Matsuo, Y. et al. Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nat. Commun. 8, 159 (2017). (PMID: 28757607553443310.1038/s41467-017-00188-1)
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell https://doi.org/10.1016/j.cell.2013.05.039 (2013). (PMID: 10.1016/j.cell.2013.05.039237468383836174)
Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. https://doi.org/10.1146/annurev.biochem.75.101304.123901 (2006). (PMID: 10.1146/annurev.biochem.75.101304.12390116756495)
Sitron, C. S. & Brandman, O. Detection and degradation of stalled nascent chains via ribosome-associated quality control. Annu. Rev. Biochem. https://doi.org/10.1146/annurev-biochem-013118-110729 (2020). (PMID: 10.1146/annurev-biochem-013118-110729325695288258965)
المشرفين على المادة: 0 (Saccharomyces cerevisiae Proteins)
0 (RNA, Messenger)
EC 2.3.2.27 (Ubiquitin-Protein Ligases)
تواريخ الأحداث: Date Created: 20240116 Date Completed: 20240118 Latest Revision: 20240119
رمز التحديث: 20240120
مُعرف محوري في PubMed: PMC10792078
DOI: 10.1038/s41598-023-50811-z
PMID: 38228636
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-023-50811-z