دورية أكاديمية

Super enhancer loci of EGFR regulate EGFR variant 8 through enhancer RNA and strongly associate with survival in HNSCCs.

التفاصيل البيبلوغرافية
العنوان: Super enhancer loci of EGFR regulate EGFR variant 8 through enhancer RNA and strongly associate with survival in HNSCCs.
المؤلفون: Chakkarappan SR; Department of Health Research, Multi Disciplinary Research Unit (DHR-MRU), Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India., Umadharshini KV; Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India., Dhamodharan S; Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India., Rose MM; Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India., Gopu G; Department of Surgical Oncology, Rajiv Gandhi Government General Hospital, Madras Medical College, Chennai, 600003, India., Murugan AK; Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, 11211, Riyadh, Saudi Arabia., Inoue I; Human Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan., Munirajan AK; Department of Health Research, Multi Disciplinary Research Unit (DHR-MRU), Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India. akmunirajan@gmail.com.; Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India. akmunirajan@gmail.com.
المصدر: Molecular genetics and genomics : MGG [Mol Genet Genomics] 2024 Jan 18; Vol. 299 (1), pp. 3. Date of Electronic Publication: 2024 Jan 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101093320 Publication Model: Electronic Cited Medium: Internet ISSN: 1617-4623 (Electronic) Linking ISSN: 16174623 NLM ISO Abbreviation: Mol Genet Genomics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer-Verlag, c2001-
مواضيع طبية MeSH: Enhancer RNAs* , Head and Neck Neoplasms*/genetics, Humans ; Squamous Cell Carcinoma of Head and Neck ; Super Enhancers ; ErbB Receptors/genetics ; Chromatin/genetics
مستخلص: Epidermal growth factor receptor (EGFR) has been shown to be overexpressed in human cancers due to mutation, amplification, and epigenetic hyperactivity, which leads to deregulated transcriptional mechanism. Among the eight different EGFR isoforms, the mechanism of regulation of full-length variant 1 is well-known, no studies have examined the function & factors regulating the expression of variant 8. This study aimed to understand the function of EGFR super-enhancer loci and its associated transcription factors regulating the expression of EGFR variant 8. Our study shows that overexpression of variant 8 and its transcription was more prevalent than variant 1 in many cancers and positively correlated with the EGFR-AS1 expression in oral cancer and HNSCC. Notably, individuals overexpressing variant 8 showed shorter overall survival and had a greater connection with other clinical traits than patients with overexpression of variant 1. In this study, TCGA enhancer RNA profiling on the constituent enhancer (CE1 and CE2) region revealed that the multiple enhancer RNAs formed from CE2 by employing CE1 as a promoter. Our bioinformatic analysis further supports the enrichment of enhancer RNA specific chromatin marks H3K27ac, H3K4me1, POL2 and H2AZ on CE2. GeneHancer and 3D chromatin capture analysis showed clustered interactions between CE1, CE2 loci and this interaction may regulates expression of both EGFR-eRNA and variant 8. Moreover, increased expression of SNAI2 and its close relationship to EGFR-AS1 and variant 8 suggest that SNAI2 could regulates variant 8 overexpression by building a MegaTrans complex with both EGFR-eRNA and EGFR-AS1. Our findings show that EGFR variant 8 and its transcriptional regulation & chromatin modification by eRNAs may provide a rationale for targeting RNA splicing in combination with targeted EGFR therapies in cancer.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abou-Fayçal C, Hatat AS, Gazzeri S, Eymin B (2017) Splice variants of the RTK family: their role in tumour progression and response to targeted therapy. Int J Mol Sci. https://doi.org/10.3390/ijms18020383. (PMID: 10.3390/ijms18020383282086605343918)
Albitar L, Pickett G, Morgan M et al (2010) EGFR isoforms and gene regulation in human endometrial cancer cells. Mol Cancer 9:1–13. https://doi.org/10.1186/1476-4598-9-166. (PMID: 10.1186/1476-4598-9-166)
Alvarez-Dominguez JR, Knoll M, Gromatzky AA, Lodish HF (2017) The super-enhancer-derived alncRNA-EC7/bloodlinc potentiates red blood cell development in trans. Cell Rep 19:2503–2514. https://doi.org/10.1016/j.celrep.2017.05.082. (PMID: 10.1016/j.celrep.2017.05.082286369396013260)
Andersson R, Gebhard C, Miguel-Escalada I et al (2014) An atlas of active enhancers across human cell types and tissues. Nature 507:455–461. https://doi.org/10.1038/nature12787. (PMID: 10.1038/nature12787246707635215096)
Arnold PR, Wells AD, Li XC (2020) Diversity and emerging roles of enhancer RNA in regulation of gene expression and cell fate. Front Cell Dev Biol 7:1–14. https://doi.org/10.3389/fcell.2019.00377. (PMID: 10.3389/fcell.2019.00377)
Arunkumar G, Anand S, Raksha P et al (2018) LncRNA OIP5-AS1 is overexpressed in undifferentiated oral tumors and integrated analysis identifies as a downstream effector of stemness-associated transcription factors. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-25451-3. (PMID: 10.1038/s41598-018-25451-3)
Babic I, Anderson ES, Tanaka K et al (2013) EGFR mutation-induced alternative splicing of max contributes to growth of glycolytic tumors in brain cancer. Cell Metab 17:1000–1008. https://doi.org/10.1016/j.cmet.2013.04.013. (PMID: 10.1016/j.cmet.2013.04.013237070733679227)
Beagan JA, Duong MT, Titus KR et al (2017) YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment. Genome Res 27:1139–1152. https://doi.org/10.1101/gr.215160.116. (PMID: 10.1101/gr.215160.116285361805495066)
Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492. (PMID: 10.3322/caac.2149230207593)
Bulger M, Groudine M (2011) Functional and mechanistic diversity of distal transcription enhancers. Cell 144:327–339. https://doi.org/10.1016/j.cell.2011.01.024. (PMID: 10.1016/j.cell.2011.01.024212956963742076)
Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095. (PMID: 10.1158/2159-8290.CD-12-009522588877)
Chen H, Liang H (2020) A high-resolution map of human enhancer RNA loci characterizes super-enhancer activities in cancer. Cancer Cell 38:701-715.e5. https://doi.org/10.1016/j.ccell.2020.08.020. (PMID: 10.1016/j.ccell.2020.08.020330072587658066)
Chen H, Li C, Peng X et al (2018) A pan-cancer analysis of enhancer expression in nearly 9000 patient samples. Cell 173:386-399.e12. https://doi.org/10.1016/j.cell.2018.03.027. (PMID: 10.1016/j.cell.2018.03.027296250545890960)
Cheng JH, Pan DZC, Tsai ZTY, Tsai HK (2015) Genome-wide analysis of enhancer RNA in gene regulation across 12 mouse tissues. Sci Rep 5:1–9. https://doi.org/10.1038/srep12648. (PMID: 10.1038/srep12648)
Choi S, Sathe A, Mathé E et al (2021) Identification of a putative enhancer RNA for EGFR in hyper-accessible regions in esophageal squamous cell carcinoma cells by analysis of chromatin accessibility landscapes. Front Oncol 11:1–14. https://doi.org/10.3389/fonc.2021.724687. (PMID: 10.3389/fonc.2021.724687)
Dhamodharan S, Rose MM, Chakkarappan SR et al (2021) Genetic variant rs10251977 (G>A) in EGFR-AS1 modulates the expression of EGFR isoforms A and D. Sci Rep 11:1–14. https://doi.org/10.1038/s41598-021-88161-3. (PMID: 10.1038/s41598-021-88161-3)
Dong ZQ, Guo ZY, Xie J (2019) The lncRNA EGFR-AS1 is linked to migration, invasion and apoptosis in glioma cells by targeting miR-133b/RACK1. Biomed Pharmacother 118:109292. https://doi.org/10.1016/j.biopha.2019.109292. (PMID: 10.1016/j.biopha.2019.10929231545240)
Dorighi KM, Swigut T, Henriques T et al (2017) Mll3 and Mll4 facilitate enhancer RNA synthesis and transcription from promoters independently of H3K4 monomethylation. Mol Cell 66:568-576.e4. https://doi.org/10.1016/j.molcel.2017.04.018. (PMID: 10.1016/j.molcel.2017.04.018284834185662137)
Elferink LA, Resto VA (2011) Receptor-tyrosine-kinase-targeted therapies for head and neck cancer. J Signal Transduct 2011:1–11. https://doi.org/10.1155/2011/982879. (PMID: 10.1155/2011/982879)
Fishilevich S, Nudel R, Rappaport N et al (2017) GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database 2017:1–17. https://doi.org/10.1093/database/bax028. (PMID: 10.1093/database/bax028)
Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cbioportal complementary data sources and analysis options. Sci Signal 6:1–20. https://doi.org/10.1126/scisignal.2004088.Integrative. (PMID: 10.1126/scisignal.2004088.Integrative)
Godfrey L, Crump NT, O’Byrne S et al (2021) H3K79me2/3 controls enhancer–promoter interactions and activation of the pan-cancer stem cell marker PROM1/CD133 in MLL-AF4 leukemia cells. Leukemia 35:90–106. https://doi.org/10.1038/s41375-020-0808-y. (PMID: 10.1038/s41375-020-0808-y32242051)
Huang Z, Du G, Huang X et al (2018) The enhancer RNA lnc-SLC4A1-1 epigenetically regulates unexplained recurrent pregnancy loss (URPL) by activating CXCL8 and NF-kB pathway. EBioMedicine 38:162–170. https://doi.org/10.1016/j.ebiom.2018.11.015. (PMID: 10.1016/j.ebiom.2018.11.015304482286306333)
Jameson NM, Ma J, Benitez J et al (2019) Intron 1-mediated regulation of EGFR expression in EGFR-dependent malignancies is mediated by AP-1 and BET proteins. Mol Cancer Res 17:2208–2220. https://doi.org/10.1158/1541-7786.MCR-19-0747. (PMID: 10.1158/1541-7786.MCR-19-0747314442326825583)
Jiao W, Chen Y, Song H et al (2018) HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis. Oncogene 37:2728–2745. https://doi.org/10.1038/s41388-018-0128-0. (PMID: 10.1038/s41388-018-0128-029511351)
Kaikkonen MU, Spann NJ, Heinz S et al (2013) Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol Cell 51:310–325. https://doi.org/10.1016/j.molcel.2013.07.010. (PMID: 10.1016/j.molcel.2013.07.010239327143779836)
Kim YW, Lee S, Yun J, Kim AR (2015) Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the β-globin locus. Biosci Rep 35:1–8. https://doi.org/10.1042/BSR20140126. (PMID: 10.1042/BSR20140126)
Kusewitt DF, Choi C, Newkirk KM et al (2009) Slug/Snai2 is a downstream mediator of epidermal growth factor receptor-stimulated reepithelialization. J Invest Dermatol 129:491–495. https://doi.org/10.1038/jid.2008.222. (PMID: 10.1038/jid.2008.22218685621)
Li M, Mukasa A, del Inda MM et al (2011) Guanylate binding protein 1 is a novel effector of EGFR-driven invasion in glioblastoma. J Exp Med 208:2657–2673. https://doi.org/10.1084/jem.20111102. (PMID: 10.1084/jem.20111102221628323244036)
Li J, Han L, Roebuck P et al (2015a) TANRIC: an interactive open platform to explore the function of IncRNAs in cancer. Cancer Res 75:3728–3737. https://doi.org/10.1158/0008-5472.CAN-15-0273. (PMID: 10.1158/0008-5472.CAN-15-0273262089064573884)
Li Y, Wu Y, Abbatiello TC et al (2015b) Slug contributes to cancer progression by direct regulation of ERα signaling pathway. Int J Oncol 46:1461–1472. https://doi.org/10.3892/ijo.2015.2878. (PMID: 10.3892/ijo.2015.2878256522554356499)
Lurje G, Lenz HJ (2010) EGFR signaling and drug discovery. Oncology 77:400–410. https://doi.org/10.1159/000279388. (PMID: 10.1159/000279388)
Maiti GP, Mondal P, Mukherjee N et al (2013) Overexpression of EGFR in head and neck squamous cell carcinoma is associated with inactivation of SH3GL2 and CDC25A genes. PLoS ONE. https://doi.org/10.1371/journal.pone.0063440. (PMID: 10.1371/journal.pone.0063440243491543861535)
Manjari M, Popli R, Paul S et al (1996) Prevalence of oral cavity, pharynx, larynx and nasal cavity malignancies in Amritsar, Punjab. Indian J Otolaryngol Head Neck Surg. https://doi.org/10.1007/BF03048602. (PMID: 10.1007/BF03048602)
Melo CA, Drost J, Wijchers PJ et al (2013) ERNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 49:524–535. https://doi.org/10.1016/j.molcel.2012.11.021. (PMID: 10.1016/j.molcel.2012.11.02123273978)
Nair SJ, Yang L, Meluzzi D et al (2019) Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat Struct Mol Biol 26:193–203. https://doi.org/10.1038/s41594-019-0190-5. (PMID: 10.1038/s41594-019-0190-5308337846709854)
Ren C, Liu F, Ouyang Z et al (2017) Functional annotation of structural ncRNAs within enhancer RNAs in the human genome: Implications for human disease. Sci Rep 7:1–15. https://doi.org/10.1038/s41598-017-15822-7. (PMID: 10.1038/s41598-017-15822-7)
Sabari BR, Dall’ Agnese A, Boija A et al (2018) Coactivator condensation at super-enhancers links phase separation and gene control. Science. https://doi.org/10.1126/science.aar3958. (PMID: 10.1126/science.aar3958299300916092193)
Shi J, Whyte WA, Zepeda-Mendoza CJ et al (2013) Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev 27:2648–2662. https://doi.org/10.1101/gad.232710.113. (PMID: 10.1101/gad.232710.113242857143877755)
Shii L, Song L, Maurer K et al (2017) SERPINB2 is regulated by dynamic interactions with pause-release proteins and enhancer RNAs. Mol Immunol 88:20–31. https://doi.org/10.1016/j.molimm.2017.05.005. (PMID: 10.1016/j.molimm.2017.05.00528578223)
Sigova AA (2015) Transcription factor trapping by Rna in gene regulatory elements. Science 350:978–982. (PMID: 10.1126/science.aad3346265161994720525)
Spurlock CF, Shaginurova G, Tossberg JT et al (2017) Profiles of long noncoding RNAs in human naive and memory T cells. J Immunol 199:547–558. https://doi.org/10.4049/jimmunol.1700232. (PMID: 10.4049/jimmunol.170023228600289)
Sun W, Duan T, Ye P et al (2018) TSVdb: a web-tool for TCGA splicing variants analysis. BMC Genom 19:1–7. https://doi.org/10.1186/s12864-018-4775-x. (PMID: 10.1186/s12864-018-4775-x)
Tan DSW, Chong FT, Leong HS et al (2017) Long noncoding RNA EGFR-AS1 mediates epidermal growth factor receptor addiction and modulates treatment response in squamous cell carcinoma. Nat Med 23:1167–1175. https://doi.org/10.1038/nm.4401. (PMID: 10.1038/nm.440128920960)
Tseng HY, Chen YA, Jen J et al (2017) Oncogenic MCT-1 activation promotes YY1-EGFR-MnSOD signaling and tumor progression. Oncogenesis. https://doi.org/10.1038/oncsis.2017.13. (PMID: 10.1038/oncsis.2017.13283943545520490)
Vincent CA, Nissen I, Hörnblad A, Remeseiro S (2023) Epigenomic perturbation of novel EGFR enhancers reduces the proliferative and invasive capacity of glioblastoma and increases sensitivity to temozolomide. BMC Cancer. https://doi.org/10.1186/s12885-023-11418-9. (PMID: 10.1186/s12885-023-11418-93780333310557167)
Wang KC, Yang YW, Liu B et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–126. https://doi.org/10.1038/nature09819. (PMID: 10.1038/nature09819214231683670758)
Weinholdt C, Wichmann H, Kotrba J et al (2019) Prediction of regulatory targets of alternative isoforms of the epidermal growth factor receptor in a glioblastoma cell line. BMC Bioinform 20:1–14. https://doi.org/10.1186/s12859-019-2944-9. (PMID: 10.1186/s12859-019-2944-9)
Weintraub AS, Li CH, Zamudio AV et al (2017) YY1 is a structural regulator of enhancer-promoter loops. Cell 171:1573-1588.e28. https://doi.org/10.1016/j.cell.2017.11.008. (PMID: 10.1016/j.cell.2017.11.008292247775785279)
Whalen S, Truty RM, Pollard KS (2016) Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat Genet 48:488–496. https://doi.org/10.1038/ng.3539. (PMID: 10.1038/ng.3539270642554910881)
Zhang Z, Lee JH, Ruan H et al (2019) Transcriptional landscape and clinical utility of enhancer RNAs for eRNA-targeted therapy in cancer. Nat Commun 10:1–12. https://doi.org/10.1038/s41467-019-12543-5. (PMID: 10.1038/s41467-019-12543-5)
Zhou Q, Yu M, Tirado-Magallanes R et al (2021) ZNF143 mediates CTCF-bound promoter–enhancer loops required for murine hematopoietic stem and progenitor cell function. Nat Commun. https://doi.org/10.1038/s41467-020-20282-1. (PMID: 10.1038/s41467-020-20282-1349340579632329)
معلومات مُعتمدة: No. V.25011/536-HRD/2016-HR Department of Health Research, New Delhi, India; 1A2022 National Institute of Genetics Japan
فهرسة مساهمة: Keywords: Chromatin; CpG; EGFR; EGFR-AS1; H3K27ac; eRNA
المشرفين على المادة: 0 (Enhancer RNAs)
EC 2.7.10.1 (ErbB Receptors)
0 (Chromatin)
EC 2.7.10.1 (EGFR protein, human)
تواريخ الأحداث: Date Created: 20240118 Date Completed: 20240119 Latest Revision: 20240119
رمز التحديث: 20240119
DOI: 10.1007/s00438-023-02089-z
PMID: 38236481
قاعدة البيانات: MEDLINE
الوصف
تدمد:1617-4623
DOI:10.1007/s00438-023-02089-z