دورية أكاديمية

Gastric intestinal metaplasia: progress and remaining challenges.

التفاصيل البيبلوغرافية
العنوان: Gastric intestinal metaplasia: progress and remaining challenges.
المؤلفون: Tong QY; Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China., Pang MJ; Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China., Hu XH; Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China., Huang XZ; Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China., Sun JX; Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China., Wang XY; Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China., Burclaff J; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA.; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA., Mills JC; Section of Gastroenterology and Hepatology, Department of Medicine, Departments of Pathology and Immunology, Molecular and Cellular Biology, Baylor College of Medicine, Houston, USA., Wang ZN; Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China. znwang@cmu.edu.cn.; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China. znwang@cmu.edu.cn., Miao ZF; Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China. zfmiao@cmu.edu.cn.; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China. zfmiao@cmu.edu.cn.
المصدر: Journal of gastroenterology [J Gastroenterol] 2024 Apr; Vol. 59 (4), pp. 285-301. Date of Electronic Publication: 2024 Jan 19.
نوع المنشور: Journal Article; Review; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Springer International Country of Publication: Japan NLM ID: 9430794 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1435-5922 (Electronic) Linking ISSN: 09441174 NLM ISO Abbreviation: J Gastroenterol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Tokyo : Springer International, c1994-
مواضيع طبية MeSH: Gastritis, Atrophic* , Stomach Neoplasms*/genetics , Precancerous Conditions*/pathology, Animals ; Mice ; Biomarkers ; Metaplasia ; Gastric Mucosa/pathology
مستخلص: Most gastric cancers arise in the setting of chronic inflammation which alters gland organization, such that acid-pumping parietal cells are lost, and remaining cells undergo metaplastic change in differentiation patterns. From a basic science perspective, recent progress has been made in understanding how atrophy and initial pyloric metaplasia occur. However, pathologists and cancer biologists have long been focused on the development of intestinal metaplasia patterns in this setting. Arguably, much less progress has been made in understanding the mechanisms that lead to the intestinalization seen in chronic atrophic gastritis and pyloric metaplasia. One plausible explanation for this disparity lies in the notable absence of reliable and reproducible small animal models within the field, which would facilitate the investigation of the mechanisms underlying the development of gastric intestinal metaplasia (GIM). This review offers an in-depth exploration of the current state of research in GIM, shedding light on its pivotal role in tumorigenesis. We delve into the histological subtypes of GIM and explore their respective associations with tumor formation. We present the current repertoire of biomarkers utilized to delineate the origins and progression of GIM and provide a comprehensive survey of the available, albeit limited, mouse lines employed for modeling GIM and engage in a discussion regarding potential cell lineages that serve as the origins of GIM. Finally, we expound upon the myriad signaling pathways recognized for their activity in GIM and posit on their potential overlap and interactions that contribute to the ultimate manifestation of the disease phenotype. Through our exhaustive review of the progression from gastric disease to GIM, we aim to establish the groundwork for future research endeavors dedicated to elucidating the etiology of GIM and developing strategies for its prevention and treatment, considering its potential precancerous nature.
(© 2024. Japanese Society of Gastroenterology.)
References: Smyth EC, Nilsson M, Grabsch HI, et al. Gastric cancer. Lancet. 2020;396:635–48. (PMID: 32861308)
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49. (PMID: 33538338)
Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. CA Cancer J Clin. 2021;71:264–79. (PMID: 335921209927927)
Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49. (PMID: 14320675)
Correa P. Human gastric carcinogenesis: a multistep and multifactorial process–First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992;52:6735–40. (PMID: 1458460)
Stemmermann GN, Hayashi T. Intestinal metaplasia of the gastric mucosa: a gross and microscopic study of its distribution in various disease states. J Natl Cancer Inst. 1968;41:627–34. (PMID: 4175677)
Spechler SJ, Souza RF. Barrett’s esophagus. N Engl J Med. 2014;371:836–45. (PMID: 25162890)
Goldenring JR, Mills JC. Cellular Plasticity, Reprogramming, and Regeneration: Metaplasia in the Stomach and Beyond. Gastroenterology. 2022;162:415–30. (PMID: 34728185)
Adkins-Threats M, Mills JC. Cell plasticity in regeneration in the stomach and beyond. Curr Opin Genet Dev. 2022;75: 101948. (PMID: 3580936110378711)
Nowicki-Osuch K, Zhuang L, Jammula S, et al. Molecular phenotyping reveals the identity of Barrett’s esophagus and its malignant transition. Science. 2021;373:760–7. (PMID: 34385390)
Huang K, Ramnarayanan K, Zhu F, et al. Genomic and Epigenomic Profiling of High-Risk Intestinal Metaplasia Reveals Molecular Determinants of Progression to Gastric Cancer. Cancer Cell. 2018;33:137-50.e5. (PMID: 29290541)
Choi E, Roland JT, Barlow BJ, et al. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum. Gut. 2014;63:1711–20. (PMID: 24488499)
Schmidt PH, Lee JR, Joshi V, et al. Identification of a metaplastic cell lineage associated with human gastric adenocarcinoma. Lab Invest. 1999;79:639–46. (PMID: 10378506)
Bockerstett KA, Lewis SA, Noto CN, et al. Single-Cell Transcriptional Analyses Identify Lineage-Specific Epithelial Responses to Inflammation and Metaplastic Development in the Gastric Corpus. Gastroenterology. 2020;159:2116-29.e4. (PMID: 32835664)
Bockerstett KA, Lewis SA, Wolf KJ, et al. Single-cell transcriptional analyses of spasmolytic polypeptide-expressing metaplasia arising from acute drug injury and chronic inflammation in the stomach. Gut. 2020;69:1027–38. (PMID: 31481545)
Goldenring J. Pyloric metaplasia, pseudopyloric metaplasia, ulcer-associated cell lineage and spasmolytic polypeptide-expressing metaplasia: reparative lineages in the gastrointestinal mucosa. J Pathol. 2018;245:132–7. (PMID: 295083896026529)
Lennerz J, Kim S, Oates E, et al. The transcription factor MIST1 is a novel human gastric chief cell marker whose expression is lost in metaplasia, dysplasia, and carcinoma. Am J Pathol. 2010;177:1514–33. (PMID: 207098042928982)
Radyk MD, Burclaff J, Willet SG, et al. Metaplastic Cells in the Stomach Arise, Independently of Stem Cells, via Dedifferentiation or Transdifferentiation of Chief Cells. Gastroenterology. 2018;154:839-43.e2. (PMID: 29248442)
Burclaff J, Osaki LH, Liu D, et al. Targeted Apoptosis of Parietal Cells Is Insufficient to Induce Metaplasia in Stomach. Gastroenterology. 2017;152:762-6.e7. (PMID: 27932312)
Choi E, Hendley A, Bailey J, et al. Expression of Activated Ras in Gastric Chief Cells of Mice Leads to the Full Spectrum of Metaplastic Lineage Transitions. Gastroenterology. 2016;150:918-30.e13. (PMID: 26677984)
Brown JW, Cho CJ, Mills JC. Paligenosis: cellular remodeling during tissue repair. Annu Rev Physiol. 2022;84:461–83. (PMID: 34705482)
Giroux V, Rustgi AK. Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat Rev Cancer. 2017;17:594–604. (PMID: 288606465998678)
Jin RU, Mills JC. The cyclical hit model: how paligenosis might establish the mutational landscape in Barrett’s esophagus and esophageal adenocarcinoma. Curr Opin Gastroenterol. 2019;35:363–70. (PMID: 31021922)
Evans JA, Carlotti E, Lin ML, et al. Clonal Transitions and Phenotypic Evolution in Barrett’s Esophagus. Gastroenterology. 2022;162:1197-209.e13. (PMID: 34973296)
Correa P, Piazuelo MB, Wilson KT. Pathology of gastric intestinal metaplasia: clinical implications. Am J Gastroenterol. 2010;105:493–8. (PMID: 202036362895407)
Teglbjaerg PS, Nielsen HO. “Small intestinal type” and “colonic type” intestinal metaplasia of the human stomach, and their relationship to the histogenetic types of gastric adenocarcinoma. Acta Pathol Microbiol Scand A. 1978;86A:351–5. (PMID: 716896)
Segura DI, Montero C. Histochemical characterization of different types of intestinal metaplasia in gastric mucosa. Cancer. 1983;52:498–503. (PMID: 6190549)
González C, Sanz-Anquela J, Companioni O, et al. Incomplete type of intestinal metaplasia has the highest risk to progress to gastric cancer: results of the Spanish follow-up multicenter study. J Gastroenterol Hepatol. 2016;31:953–8. (PMID: 26630310)
Busslinger GA, de Barbanson B, Oka R, et al. (2021) Molecular characterization of Barrett's esophagus at single-cell resolution. Proc Natl Acad Sci U S A 118.
Lavery DL, Nicholson AM, Poulsom R, et al. The stem cell organisation, and the proliferative and gene expression profile of Barrett’s epithelium, replicates pyloric-type gastric glands. Gut. 2014;63:1854–63. (PMID: 24550372)
Zeng Y, Li QK, Roy S, et al. Shared features of metaplasia and the development of adenocarcinoma in the stomach and esophagus. Front Cell Dev Biol. 2023;11:1151790. (PMID: 3699410110040611)
Graham DY, Rugge M, Genta RM. Diagnosis: gastric intestinal metaplasia - what to do next? Curr Opin Gastroenterol. 2019;35:535–43. (PMID: 314152506900998)
Jass J, Filipe M. A variant of intestinal metaplasia associated with gastric carcinoma: a histochemical study. Histopathology. 1979;3:191–9. (PMID: 468122)
Rokkas T, Filipe MI, Sladen GE. Detection of an increased incidence of early gastric cancer in patients with intestinal metaplasia type III who are closely followed up. Gut. 1991;32:1110–3. (PMID: 19551631379368)
Brown JW, Das KK, Kalas V, et al. mAb Das-1 recognizes 3’-Sulfated Lewis A/C, which is aberrantly expressed during metaplastic and oncogenic transformation of several gastrointestinal Epithelia. PLoS ONE. 2021;16: e0261082. (PMID: 349107468673611)
Chen B, Scurrah CR, McKinley ET, et al. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell. 2021;184:6262-80.e26. (PMID: 349109288941949)
Dinis-Ribeiro M, Areia M, de Vries AC, et al. Management of precancerous conditions and lesions in the stomach (MAPS): guideline from the European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter Study Group (EHSG), European Society of Pathology (ESP), and the Sociedade Portuguesa de Endoscopia Digestiva (SPED). Endoscopy. 2012;44:74–94. (PMID: 22198778)
Rappold GA, Hameister H, Cremer T, et al. c-myc and immunoglobulin kappa light chain constant genes are on the 8q+ chromosome of three Burkitt lymphoma lines with t(2;8) translocations. Embo j. 1984;3:2951–5. (PMID: 6441706557796)
Ye W, Takabayashi H, Yang Y, et al. Regulation of Gastric Lgr5+ve Cell Homeostasis by Bone Morphogenetic Protein (BMP) Signaling and Inflammatory Stimuli. Cell Mol Gastroenterol Hepatol. 2018;5:523–38. (PMID: 299309776009760)
Cravo M, Pinto R, Fidalgo P, et al. Global DNA hypomethylation occurs in the early stages of intestinal type gastric carcinoma. Gut. 1996;39:434–8. (PMID: 89496501383352)
Gonda TA, Kim YI, Salas MC, et al. Folic acid increases global DNA methylation and reduces inflammation to prevent Helicobacter-associated gastric cancer in mice. Gastroenterology. 2012;142:824-33.e7. (PMID: 22248660)
Schmid CA, Müller A. FoxD3 is a novel, epigenetically regulated tumor suppressor in gastric carcinogenesis. Gastroenterology. 2013;144:22–5. (PMID: 23164571)
Cheng AS, Li MS, Kang W, et al. Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis. Gastroenterology. 2013;144:122-33.e9. (PMID: 23058321)
Krishnan V, Lim D, Hoang P, et al. DNA damage signalling as an anti-cancer barrier in gastric intestinal metaplasia. Gut. 2020;69:1738–49. (PMID: 31937549)
Cooke MS, Evans MD, Dizdaroglu M, et al. Oxidative DNA damage: mechanisms, mutation, and disease. Faseb j. 2003;17:1195–214. (PMID: 12832285)
Kawanishi S, Ohnishi S, Ma N, Hiraku Y, Murata M. Crosstalk between DNA damage and inflammation in the multiple steps of carcinogenesis. Int J Mol Sci. 2017;18(8):1808. (PMID: 288256315578195)
Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8. (PMID: 198472582906700)
Rogakou EP, Pilch DR, Orr AH, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68. (PMID: 9488723)
Plappert-Helbig U, Libertini S, Frieauff W, et al. Gamma-H2AX immunofluorescence for the detection of tissue-specific genotoxicity in vivo. Environ Mol Mutagen. 2019;60:4–16. (PMID: 30307065)
Polley M, Leung S, McShane L, et al. An international Ki67 reproducibility study. J Natl Cancer Inst. 2013;105:1897–906. (PMID: 242039873888090)
Matsuo J, Kimura S, Yamamura A, et al. Identification of Stem Cells in the Epithelium of the Stomach Corpus and Antrum of Mice. Gastroenterology. 2017;152(218–31): e14.
Khurana SS, Riehl TE, Moore BD, et al. The hyaluronic acid receptor CD44 coordinates normal and metaplastic gastric epithelial progenitor cell proliferation. J Biol Chem. 2013;288:16085–97. (PMID: 235893103668764)
Ishimoto T, Nagano O, Yae T, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell. 2011;19:387–400. (PMID: 21397861)
Kang W, Rathinavelu S, Samuelson L, et al. Interferon gamma induction of gastric mucous neck cell hypertrophy. Lab Investig J Tech Meth Pathol. 2005;85:702–15.
Oshima M, Oshima H, Matsunaga A, et al. Hyperplastic gastric tumors with spasmolytic polypeptide-expressing metaplasia caused by tumor necrosis factor-alpha-dependent inflammation in cyclooxygenase-2/microsomal prostaglandin E synthase-1 transgenic mice. Can Res. 2005;65:9147–51.
Oue N, Mitani Y, Aung PP, et al. Expression and localization of Reg IV in human neoplastic and non-neoplastic tissues: Reg IV expression is associated with intestinal and neuroendocrine differentiation in gastric adenocarcinoma. J Pathol. 2005;207:185–98. (PMID: 16086444)
Lee SH, Jang B, Min J, et al. Up-regulation of Aquaporin 5 Defines Spasmolytic Polypeptide-Expressing Metaplasia and Progression to Incomplete Intestinal Metaplasia. Cell Mol Gastroenterol Hepatol. 2022;13:199–217. (PMID: 34455107)
Grün D, Lyubimova A, Kester L, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525:251–5. (PMID: 26287467)
Elmentaite R, Kumasaka N, Roberts K, et al. Cells of the human intestinal tract mapped across space and time. Nature. 2021;597:250–5. (PMID: 344973898426186)
Nowicki-Osuch K, Zhuang L, Cheung TS, et al. Single-cell RNA sequencing unifies developmental programs of esophageal and gastric intestinal metaplasia. Cancer Discov. 2023;13(6):1346–63. (PMID: 3692987310236154)
Wang Y, Song W, Wang J, et al. Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. J Exp Med. 2020;217(2):e20191130. (PMID: 31753849)
Kang J, Lee B, Kim N, et al. CDX1 and CDX2 expression in intestinal metaplasia, dysplasia and gastric cancer. J Korean Med Sci. 2011;26:647–53. (PMID: 215328563082117)
Mesquita P, Jonckheere N, Almeida R, et al. Human MUC2 mucin gene is transcriptionally regulated by Cdx homeodomain proteins in gastrointestinal carcinoma cell lines. J Biol Chem. 2003;278:51549–56. (PMID: 14525978)
Eda A, Osawa H, Yanaka I, et al. Expression of homeobox gene CDX2 precedes that of CDX1 during the progression of intestinal metaplasia. J Gastroenterol. 2002;37:94–100. (PMID: 11871772)
Bai Y, Yamamoto H, Akiyama Y, et al. Ectopic expression of homeodomain protein CDX2 in intestinal metaplasia and carcinomas of the stomach. Cancer Lett. 2002;176:47–55. (PMID: 11790453)
Li T, Guo H, Li H, et al. MicroRNA-92a-1-5p increases CDX2 by targeting FOXD1 in bile acids-induced gastric intestinal metaplasia. Gut. 2019;68:1751–63. (PMID: 30635407)
Gu W, Wang H, Huang X, et al. SATB2 preserves colon stem cell identity and mediates ileum-colon conversion via enhancer remodeling. Cell Stem Cell. 2022;29:101-15.e10. (PMID: 34582804)
Grötzinger C, Kneifel J, Patschan D, et al. LI-cadherin: a marker of gastric metaplasia and neoplasia. Gut. 2001;49:73–81. (PMID: 114131131728355)
Katz JP, Perreault N, Goldstein BG, et al. Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach. Gastroenterology. 2005;128:935–45. (PMID: 15825076)
Birbe R, Palazzo JP, Walters R, et al. Guanylyl cyclase C is a marker of intestinal metaplasia, dysplasia, and adenocarcinoma of the gastrointestinal tract. Hum Pathol. 2005;36:170–9. (PMID: 15754294)
Hinoi T, Gesina G, Akyol A, et al. CDX2-regulated expression of iron transport protein hephaestin in intestinal and colonic epithelium. Gastroenterology. 2005;128:946–61. (PMID: 15825077)
Roy S, Esmaeilniakooshkghazi A, Patnaik S, et al. Villin-1 and Gelsolin Regulate Changes in Actin Dynamics That Affect Cell Survival Signaling Pathways and Intestinal Inflammation. Gastroenterology. 2018;154:1405-20.e2. (PMID: 29274870)
Cubas R, Zhang S, Li M, et al. Trop2 expression contributes to tumor pathogenesis by activating the ERK MAPK pathway. Mol Cancer. 2010;9:253. (PMID: 208582812946292)
Weis VG, Sousa JF, LaFleur BJ, et al. Heterogeneity in mouse spasmolytic polypeptide-expressing metaplasia lineages identifies markers of metaplastic progression. Gut. 2013;62:1270–9. (PMID: 22773549)
De Salvo C, Pastorelli L, Petersen CP, et al. Interleukin 33 Triggers Early Eosinophil-Dependent Events Leading to Metaplasia in a Chronic Model of Gastritis-Prone Mice. Gastroenterology. 2021;160:302-16.e7. (PMID: 33010253)
Chajès V, Jenab M, Romieu I, et al. Plasma phospholipid fatty acid concentrations and risk of gastric adenocarcinomas in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST). Am J Clin Nutr. 2011;94:1304–13. (PMID: 21993438)
Jiang M, Wu N, Xu B, et al. Fatty acid-induced CD36 expression via O-GlcNAcylation drives gastric cancer metastasis. Theranostics. 2019;9:5359–73. (PMID: 314102206691574)
Hirata Y, Sezaki T, Tamura-Nakano M, et al. Fatty acids in a high-fat diet potentially induce gastric parietal-cell damage and metaplasia in mice. J Gastroenterol. 2017;52:889–903. (PMID: 27873093)
Fox JG, Wang TC, Rogers AB, et al. Host and microbial constituents influence Helicobacter pylori-induced cancer in a murine model of hypergastrinemia. Gastroenterology. 2003;124:1879–90. (PMID: 12806621)
Mutoh H, Sakurai S, Satoh K, et al. Cdx1 induced intestinal metaplasia in the transgenic mouse stomach: comparative study with Cdx2 transgenic mice. Gut. 2004;53:1416–23. (PMID: 153614871774241)
Nam KT, Lee HJ, Mok H, et al. Amphiregulin-deficient mice develop spasmolytic polypeptide expressing metaplasia and intestinal metaplasia. Gastroenterology. 2009;136(4):1288–96. (PMID: 19230855)
Shinohara M, Mao M, Keeley TM, et al. Bone morphogenetic protein signaling regulates gastric epithelial cell development and proliferation in mice. Gastroenterology. 2010;139:2050-60.e2. (PMID: 20826155)
Okumura T, Ericksen RE, Takaishi S, et al. K-ras mutation targeted to gastric tissue progenitor cells results in chronic inflammation, an altered microenvironment, and progression to intraepithelial neoplasia. Cancer Res. 2010;70:8435–45. (PMID: 209594882970750)
Ito K, Chuang LS, Ito T, et al. Loss of Runx3 is a key event in inducing precancerous state of the stomach. Gastroenterology. 2011;140:1536-46.e8. (PMID: 21277301)
Ray K, Bell K, Yan J, et al. Epithelial tissues have varying degrees of susceptibility to Kras(G12D)-initiated tumorigenesis in a mouse model. PLoS ONE. 2011;6: e16786. (PMID: 213117743032792)
Asano N, Imatani A, Watanabe T, et al. Cdx2 Expression and Intestinal Metaplasia Induced by H pylori Infection of Gastric Cells Is Regulated by NOD1-Mediated Innate Immune Responses. Cancer Res. 2016;76:1135–45. (PMID: 267592444799656)
Li XB, Yang G, Zhu L, et al. Gastric Lgr5(+) stem cells are the cellular origin of invasive intestinal-type gastric cancer in mice. Cell Res. 2016;26:838–49. (PMID: 270914325129876)
Roy SAB, Allaire JM, Ouellet C, et al. Loss of mesenchymal bone morphogenetic protein signaling leads to development of reactive stroma and initiation of the gastric neoplastic cascade. Sci Rep. 2016;6:32759. (PMID: 276094645016723)
Leushacke M, Tan S, Wong A, et al. Lgr5-expressing chief cells drive epithelial regeneration and cancer in the oxyntic stomach. Nat Cell Biol. 2017;19:774–86. (PMID: 28581476)
Maastricht Pathology. 11th Joint Meeting of the British Division of the International Academy of Pathology and the Pathological Society of Great Britain and Ireland, 19–22 June 2018. J Pathol. 2018;246(1):1–46.
Suzuki K, Sentani K, Tanaka H, et al. Deficiency of Stomach-Type Claudin-18 in Mice Induces Gastric Tumor Formation Independent of H pylori Infection. Cell Mol Gastroenterol Hepatol. 2019;8:119–42. (PMID: 309107006554658)
Gobert AP, Boutaud O, Asim M, et al. Dicarbonyl Electrophiles Mediate Inflammation-Induced Gastrointestinal Carcinogenesis. Gastroenterology. 2021;160(1256–68): e9.
Douchi D, Yamamura A, Matsuo J, et al. A Point Mutation R122C in RUNX3 Promotes the Expansion of Isthmus Stem Cells and Inhibits Their Differentiation in the Stomach. Cell Mol Gastroenterol Hepatol. 2022;13:1317–45. (PMID: 350745688933847)
Cancer Genome Atlas Research N. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.
Won Y, Choi E. Mouse models of Kras activation in gastric cancer. Exp Mol Med. 2022;54:1793–8. (PMID: 363694669723172)
Matsuo J, Douchi D, Myint K, et al. Iqgap3-Ras axis drives stem cell proliferation in the stomach corpus during homoeostasis and repair. Gut. 2021;70:1833–46. (PMID: 33293280)
Hata M, Kinoshita H, Hayakawa Y, et al. GPR30-Expressing Gastric Chief Cells Do Not Dedifferentiate But Are Eliminated via PDK-Dependent Cell Competition During Development of Metaplasia. Gastroenterology. 2020;158:1650-66.e15. (PMID: 32032583)
Min J, Zhang C, Bliton RJ, et al. Dysplastic Stem Cell Plasticity Functions as a Driving Force for Neoplastic Transformation of Precancerous Gastric Mucosa. Gastroenterology. 2022;163:875–90. (PMID: 35700772)
Hood FE, Sahraoui YM, Jenkins RE, et al. Ras protein abundance correlates with Ras isoform mutation patterns in cancer. Oncogene. 2023;42:1224–32. (PMID: 3686424310079525)
Douchi D, Yamamura A, Matsuo J, et al. Induction of Gastric Cancer by Successive Oncogenic Activation in the Corpus. Gastroenterology. 2021;161(1907–23): e26.
Puri P, Grimmett G, Faraj R, et al. Elevated Protein Kinase A Activity in Stomach Mesenchyme Disrupts Mesenchymal-epithelial Crosstalk and Induces Preneoplasia. Cell Mol Gastroenterol Hepatol. 2022;14:643-68.e1. (PMID: 356903379421585)
Li C, Liu W, Fang D. Histological and electron-microscopic observations on the mucosa of pediculate gastric wall graft transplanted to the intestines in Wistar rats. Chin Med J (Engl). 1996;109:77–82. (PMID: 8758376)
Fischer AS, Mullerke S, Arnold A, et al. R-spondin/YAP axis promotes gastric oxyntic gland regeneration and Helicobacter pylori-associated metaplasia in mice. J Clin Invest. 2022;132(21):e151363. (PMID: 360990449621134)
Wölffling S, Daddi AA, Imai-Matsushima A, et al. EGF and BMPs Govern Differentiation and Patterning in Human Gastric Glands. Gastroenterology. 2021;161:623-36.e16. (PMID: 33957136)
Pang MJ, Burclaff JR, Jin R, et al. Gastric Organoids: Progress and Remaining Challenges. Cell Mol Gastroenterol Hepatol. 2022;13:19–33. (PMID: 34547535)
Caldwell B, Meyer AR, Weis JA, et al. Chief cell plasticity is the origin of metaplasia following acute injury in the stomach mucosa. Gut. 2022;71:1068–77. (PMID: 34497145)
Hayakawa Y, Fox J, Wang T. Isthmus Stem Cells Are the Origins of Metaplasia in the Gastric Corpus. Cell Mol Gastroenterol Hepatol. 2017;4:89–94. (PMID: 285602935440357)
Que J, Garman K, Souza R, et al. Pathogenesis and Cells of Origin of Barrett’s Esophagus. Gastroenterology. 2019;157:349-64.e1. (PMID: 31082367)
Jiang M, Li H, Zhang Y, et al. Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus. Nature. 2017;550:529–33. (PMID: 290199845831195)
Goldenring J, Nam K, Wang T, et al. Spasmolytic polypeptide-expressing metaplasia and intestinal metaplasia: time for reevaluation of metaplasias and the origins of gastric cancer. Gastroenterology. 2010;138(2207–10):10.e1.
Weis VG, Goldenring JR. Current understanding of SPEM and its standing in the preneoplastic process. Gastric Cancer. 2009;12:189–97. (PMID: 20047123)
Goldenring JR, Nam KT, Wang TC, et al. Spasmolytic polypeptide-expressing metaplasia and intestinal metaplasia: time for reevaluation of metaplasias and the origins of gastric cancer. Gastroenterology. 2010;138:2207–10. (PMID: 20450866)
Hayakawa Y, Ariyama H, Stancikova J, et al. Mist1 Expressing Gastric Stem Cells Maintain the Normal and Neoplastic Gastric Epithelium and Are Supported by a Perivascular Stem Cell Niche. Cancer Cell. 2015;28:800–14. (PMID: 265854004684751)
Nienhüser H, Kim W, Malagola E, et al. Mist1+ gastric isthmus stem cells are regulated by Wnt5a and expand in response to injury and inflammation in mice. Gut. 2021;70:654–65. (PMID: 32709613)
Saenz JB, Vargas N, Cho CJ, Mills JC. Regulation of the double-stranded RNA response through ADAR1 licenses metaplastic reprogramming in gastric epithelium. JCI Insight. 2022;7(3):e153511. (PMID: 351329598855806)
Lee JH, Kim S, Han S, et al. p57(Kip2) imposes the reserve stem cell state of gastric chief cells. Cell Stem Cell. 2022;29(826–39): e9.
Burclaff J, Willet SG, Sáenz JB, et al. Proliferation and Differentiation of Gastric Mucous Neck and Chief Cells During Homeostasis and Injury-induced Metaplasia. Gastroenterology. 2020;158:598-609.e5. (PMID: 31589873)
Stange DE, Koo BK, Huch M, et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell. 2013;155:357–68. (PMID: 241201364094146)
Miao ZF, Adkins-Threats M, Burclaff JR, et al. A Metformin-Responsive Metabolic Pathway Controls Distinct Steps in Gastric Progenitor Fate Decisions and Maturation. Cell Stem Cell. 2020;26:910-25.e6. (PMID: 322437807275895)
He GW, Lin L, DeMartino J, et al. Optimized human intestinal organoid model reveals interleukin-22-dependency of paneth cell formation. Cell Stem Cell. 2022;29:1333-45.e6. (PMID: 360020229438971)
Han S, Fink J, Jörg DJ, et al. Defining the Identity and Dynamics of Adult Gastric Isthmus Stem Cells. Cell Stem Cell. 2019;25:342-56.e7. (PMID: 314229136739486)
Singh H, Ha K, Hornick JL, et al. Hybrid Stomach-Intestinal Chromatin States Underlie Human Barrett’s Metaplasia. Gastroenterology. 2021;161:924-39.e11. (PMID: 34090884)
Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48. (PMID: 294052015858971)
Debruyne PR, Witek M, Gong L, et al. Bile acids induce ectopic expression of intestinal guanylyl cyclase C Through nuclear factor-kappaB and Cdx2 in human esophageal cells. Gastroenterology. 2006;130:1191–206. (PMID: 16618413)
Yu JH, Zheng JB, Qi J, et al. Bile acids promote gastric intestinal metaplasia by upregulating CDX2 and MUC2 expression via the FXR/NF-κB signalling pathway. Int J Oncol. 2019;54:879–92. (PMID: 307472306365039)
Yue B, Cui R, Zheng R, et al. Essential role of ALKBH5-mediated RNA demethylation modification in bile acid-induced gastric intestinal metaplasia. Mol Ther Nucleic Acids. 2021;26:458–72. (PMID: 346312778479281)
Wang N, Chen M, Ni Z, et al. HDAC6/HNF4α loop mediated by miR-1 promotes bile acids-induced gastric intestinal metaplasia. Gastric Cancer. 2021;24:103–16. (PMID: 32705446)
Jin D, Huang K, Xu M, et al. Deoxycholic acid induces gastric intestinal metaplasia by activating STAT3 signaling and disturbing gastric bile acids metabolism and microbiota. Gut Microbes. 2022;14:2120744. (PMID: 360674049467587)
Wang N, Wu S, Zhao J, et al. Bile acids increase intestinal marker expression via the FXR/SNAI2/miR-1 axis in the stomach. Cell Oncol (Dordr). 2021;44:1119–31. (PMID: 34510400)
Napetschnig J, Wu H. Molecular basis of NF-κB signaling. Annu Rev Biophys. 2013;42:443–68. (PMID: 234959703678348)
Fuchs CD, Trauner M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol. 2022;19:432–50. (PMID: 35165436)
Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89:147–91. (PMID: 19126757)
Safa A, Bahroudi Z, Shoorei H, et al. miR-1: A comprehensive review of its role in normal development and diverse disorders. Biomed Pharmacother. 2020;132: 110903. (PMID: 33096351)
Singh H, Seruggia D, Madha S, et al. Transcription factor-mediated intestinal metaplasia and the role of a shadow enhancer. Genes Dev. 2022;36:38–52. (PMID: 349698248763054)
Ni Z, Min Y, Han C, et al. TGR5-HNF4α axis contributes to bile acid-induced gastric intestinal metaplasia markers expression. Cell Death Discov. 2020;6:56. (PMID: 326558947338499)
Moore BD, Khurana SS, Huh WJ, et al. Hepatocyte nuclear factor 4α is required for cell differentiation and homeostasis in the adult mouse gastric epithelium. Am J Physiol Gastrointest Liver Physiol. 2016;311:G267–75. (PMID: 273401275007292)
Saito Y, Suzuki H, Tsugawa H, et al. Dysfunctional gastric emptying with down-regulation of muscle-specific microRNAs in Helicobacter pylori-infected mice. Gastroenterology. 2011;140:189–98. (PMID: 20801118)
Cao L, Zhu S, Lu H, et al. Helicobacter pylori-induced RASAL2 Through Activation of Nuclear Factor-κB Promotes Gastric Tumorigenesis via β-catenin Signaling Axis. Gastroenterology. 2022;162:1716-31.e17. (PMID: 35134322)
Soutto M, Bhat N, Khalafi S, et al. NF-kB-dependent activation of STAT3 by H. pylori is suppressed by TFF1. Cancer Cell Int. 2021;21:444. (PMID: 344190668380333)
Todisco A. Regulation of Gastric Metaplasia, Dysplasia, and Neoplasia by Bone Morphogenetic Protein Signaling. Cell Mol Gastroenterol Hepatol. 2017;3:339–47. (PMID: 284623765404023)
Barros R, Pereira B, Duluc I, et al. Key elements of the BMP/SMAD pathway co-localize with CDX2 in intestinal metaplasia and regulate CDX2 expression in human gastric cell lines. J Pathol. 2008;215:411–20. (PMID: 18498120)
Camilo V, Barros R, Sousa S, et al. Helicobacter pylori and the BMP pathway regulate CDX2 and SOX2 expression in gastric cells. Carcinogenesis. 2012;33:1985–92. (PMID: 22791809)
Chen HY, Hu Y, Xu XB, et al. Upregulation of oncogene Activin A receptor type I by Helicobacter pylori infection promotes gastric intestinal metaplasia via regulating CDX2. Helicobacter. 2021;26: e12849. (PMID: 34490965)
Bleuming SA, Kodach LL, Garcia Leon MJ, et al. Altered bone morphogenetic protein signalling in the Helicobacter pylori-infected stomach. J Pathol. 2006;209:190–7. (PMID: 16550632)
Kapalczynska M, Lin M, Maertzdorf J, et al. BMP feed-forward loop promotes terminal differentiation in gastric glands and is interrupted by H pylori-driven inflammation. Nat Commun. 2022;13:1577. (PMID: 353321528948225)
Osaki LH, Bockerstett KA, Wong CF, et al. Interferon-γ directly induces gastric epithelial cell death and is required for progression to metaplasia. J Pathol. 2019;247:513–23. (PMID: 305113976402979)
Zhang Y, Que J. BMP Signaling in Development, Stem Cells, and Diseases of the Gastrointestinal Tract. Annu Rev Physiol. 2020;82:251–73. (PMID: 31618602)
Petersen CP, Meyer AR, De Salvo C, et al. A signalling cascade of IL-33 to IL-13 regulates metaplasia in the mouse stomach. Gut. 2018;67:805–17. (PMID: 28196875)
Buzzelli JN, Chalinor HV, Pavlic DI, et al. IL33 Is a Stomach Alarmin That Initiates a Skewed Th2 Response to Injury and Infection. Cell Mol Gastroenterol Hepatol. 2015;1:203-21.e3. (PMID: 282106745301136)
Eissmann MF, Dijkstra C, Jarnicki A, et al. IL-33-mediated mast cell activation promotes gastric cancer through macrophage mobilization. Nat Commun. 2019;10:2735. (PMID: 312277136588585)
Meyer AR, Engevik AC, Madorsky T, et al. Group 2 Innate Lymphoid Cells Coordinate Damage Response in the Stomach. Gastroenterology. 2020;159:2077-91.e8. (PMID: 32891625)
Noto CN, Hoft SG, Bockerstett KA, et al. IL13 Acts Directly on Gastric Epithelial Cells to Promote Metaplasia Development During Chronic Gastritis. Cell Mol Gastroenterol Hepatol. 2022;13:623–42. (PMID: 34587523)
Busada JT, Peterson KN, Khadka S, et al. Glucocorticoids and Androgens Protect From Gastric Metaplasia by Suppressing Group 2 Innate Lymphoid Cell Activation. Gastroenterology. 2021;161:637-52.e4. (PMID: 33971182)
Lindemans CA, Calafiore M, Mertelsmann AM, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528:560–4. (PMID: 266498194720437)
Zheng Y, Valdez PA, Danilenko DM, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med. 2008;14:282–9. (PMID: 18264109)
Bielecki P, Riesenfeld SJ, Hütter JC, et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature. 2021;592:128–32. (PMID: 335366238336632)
Vivier E, Artis D, Colonna M, et al. Innate Lymphoid Cells: 10 Years On. Cell. 2018;174:1054–66. (PMID: 30142344)
Talbot J, Hahn P, Kroehling L, et al. Feeding-dependent VIP neuron-ILC3 circuit regulates the intestinal barrier. Nature. 2020;579:575–80. (PMID: 320502577135938)
Peng V, Xing X, Bando JK, et al. Whole-genome profiling of DNA methylation and hydroxymethylation identifies distinct regulatory programs among innate lymphocytes. Nat Immunol. 2022;23:619–31. (PMID: 353323288989654)
Horita N, Keeley TM, Hibdon ES, et al. Delta-like 1-Expressing Cells at the Gland Base Promote Proliferation of Gastric Antral Stem Cells in Mouse. Cell Mol Gastroenterol Hepatol. 2022;13:275–87. (PMID: 34438113)
Murakami K, Terakado Y, Saito K, et al. A genome-scale CRISPR screen reveals factors regulating Wnt-dependent renewal of mouse gastric epithelial cells. Proc Natl Acad Sci USA. 2021;118(4):e2016806118. (PMID: 334791807848749)
Chang HR, Nam S, Kook MC, et al. HNF4α is a therapeutic target that links AMPK to WNT signalling in early-stage gastric cancer. Gut. 2016;65:19–32. (PMID: 25410163)
Kunze B, Wein F, Fang HY, et al. Notch Signaling Mediates Differentiation in Barrett’s Esophagus and Promotes Progression to Adenocarcinoma. Gastroenterology. 2020;159:575–90. (PMID: 32325086)
معلومات مُعتمدة: R01CA246208 United States TR NCATS NIH HHS; R01CA246208 United States TR NCATS NIH HHS
فهرسة مساهمة: Keywords: Gastric cancer; Microenvironment; Paligenosis; Paneth cell; Precancerous disease
المشرفين على المادة: 0 (Biomarkers)
تواريخ الأحداث: Date Created: 20240119 Date Completed: 20240325 Latest Revision: 20240529
رمز التحديث: 20240529
DOI: 10.1007/s00535-023-02073-9
PMID: 38242996
قاعدة البيانات: MEDLINE
الوصف
تدمد:1435-5922
DOI:10.1007/s00535-023-02073-9