دورية أكاديمية

Plant U-box E3 ligases PUB20 and PUB21 negatively regulate pattern-triggered immunity in Arabidopsis.

التفاصيل البيبلوغرافية
العنوان: Plant U-box E3 ligases PUB20 and PUB21 negatively regulate pattern-triggered immunity in Arabidopsis.
المؤلفون: Yi SY; Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan. yisy@kongju.ac.kr.; Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, 32439, Republic of Korea. yisy@kongju.ac.kr., Nekrasov V; The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.; Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, UK., Ichimura K; Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan., Kang SY; Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan, 32439, Republic of Korea. sykang@kongju.ac.kr.; Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, 32439, Republic of Korea. sykang@kongju.ac.kr., Shirasu K; Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan. ken.shirasu@riken.jp.
المصدر: Plant molecular biology [Plant Mol Biol] 2024 Jan 24; Vol. 114 (1), pp. 7. Date of Electronic Publication: 2024 Jan 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Country of Publication: Netherlands NLM ID: 9106343 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-5028 (Electronic) Linking ISSN: 01674412 NLM ISO Abbreviation: Plant Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Dordrecht : Kluwer Academic
Original Publication: The Hague ; Boston : Martinus Nijhoff/Dr. W. Junk, 1981-
مواضيع طبية MeSH: Innate Immunity Recognition* , Arabidopsis*, Immunity, Innate ; Plant Proteins ; Penicillin V ; Ligases
مستخلص: Key Message: Plant U-box E3 ligases PUB20 and PUB21 are flg22-triggered signaling components and negatively regulate immune responses. Plant U-box proteins (PUBs) constitute a class of E3 ligases that are associated with various stress responses. Among the class IV PUBs featuring C-terminal Armadillo (ARM) repeats, PUB20 and PUB21 are closely related homologs. Here, we show that both PUB20 and PUB21 negatively regulate innate immunity in plants. Loss of PUB20 and PUB21 function leads to enhanced resistance to surface inoculation with the virulent bacterium Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). However, the resistance levels remain unaffected after infiltration inoculation, suggesting that PUB20 and PUB21 primarily function during the early defense stages. The enhanced resistance to Pst DC3000 in PUB mutant plants (pub20-1, pub21-1, and pub20-1/pub21-1) correlates with extensive flg22-triggered reactive oxygen production, strong MPK3 activation, and enhanced transcriptional activation of early immune response genes. Additionally, PUB mutant plants (except pub21-1) exhibit constitutive stomatal closure after Pst DC3000 inoculation, implying the significant role of PUB20 in stomatal immunity. Comparative analyses of flg22 responses between PUB mutants and wild-type plants reveals that the robust activation of the pattern-induced immune responses may enhance resistance against Pst DC3000. Notably, the hypersensitivity responses triggered by RPM1/avrRpm1 and RPS2/avrRpt2 are independent of PUB20 and PUB21. These results suggest that PUB20 and PUB21 knockout mutations affect bacterial invasion, likely during the early stages, acting as negative regulators of plant immunity.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Adams J (2003) The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29(Suppl 1):3–9. https://doi.org/10.1016/s0305-7372(03)00081-1. (PMID: 10.1016/s0305-7372(03)00081-112738238)
Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385–414. https://doi.org/10.1146/annurev.phyto.42.040103.110731. (PMID: 10.1146/annurev.phyto.42.040103.11073115283671)
Anderson JC, Wan Y, Kim YM, Pasa-Tolic L, Metz TO, Peck SC (2014) Decreased abundance of type III secretion system-inducing signals in Arabidopsis mkp1 enhances resistance against Pseudomonas syringae. Proc Natl Acad Sci USA 111(18):6846–6851. https://doi.org/10.1073/pnas.1403248111. (PMID: 10.1073/pnas.1403248111247536044020108)
Aravind L, Koonin EV (2000) The U box is a modified RING finger—a common domain in ubiquitination. Curr Biol 10(4):R132–R134. https://doi.org/10.1016/s0960-9822(00)00398-5. (PMID: 10.1016/s0960-9822(00)00398-510704423)
Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983. https://doi.org/10.1038/415977a. (PMID: 10.1038/415977a11875555)
Azevedo C, Santos-Rosa MJ, Shirasu K (2001) The U-box protein family in plants. Trends Plant Sci 6(8):354–358. https://doi.org/10.1016/s1360-1385(01)01960-4. (PMID: 10.1016/s1360-1385(01)01960-411495788)
Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324(5928):742–744. https://doi.org/10.1126/science.1171647. (PMID: 10.1126/science.1171647194238122729760)
Cho SK, Ryu MY, Song C, Kwak JM, Kim WT (2008) Arabidopsis PUB22 and PUB23 are homologous U-box E3 ubiquitin ligases that play combinatory roles in response to drought stress. Plant Cell 20(7):1899–1914. https://doi.org/10.1105/tpc.108.060699. (PMID: 10.1105/tpc.108.060699186646142518226)
Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x. (PMID: 10.1046/j.1365-313x.1998.00343.x10069079)
Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 1(3):423–445. https://doi.org/10.1093/mp/ssn019. (PMID: 10.1093/mp/ssn01919825551)
Feys B, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6(5):751–759. https://doi.org/10.1105/tpc.6.5.751. (PMID: 10.1105/tpc.6.5.75112244256160473)
Fujiwara T, Hirai MY, Chino M, Komeda Y, Naito S (1992) Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiol 99(1):263–268. (PMID: 10.1104/pp.99.1.263166688601080434)
Gilroy EM, Taylor RM, Hein I, Boevink P, Sadanandom A, Birch PR (2011) CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a. New Phytol 190(3):653–666. https://doi.org/10.1111/j.1469-8137.2011.03643.x. (PMID: 10.1111/j.1469-8137.2011.03643.x21348873)
Gomez-Gomez L, Boller T (2002) Flagellin perception: a paradigm for innate immunity. Trends Plant Sci 7(6):251–256. https://doi.org/10.1016/S1360-1385(02)02261-6. (PMID: 10.1016/S1360-1385(02)02261-612049921)
Gomez-Gomez L, Felix G, Boller T (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18(3):277–284. (PMID: 10.1046/j.1365-313X.1999.00451.x10377993)
Gonzalez-Lamothe R, Tsitsigiannis DI, Ludwig AA, Panicot M, Shirasu K, Jones JD (2006) The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. Plant Cell 18(4):1067–1083. https://doi.org/10.1105/tpc.106.040998. (PMID: 10.1105/tpc.106.040998165314901425846)
He Q, McLellan H, Boevink PC, Sadanandom A, Xie C, Birch PR, Tian Z (2015) U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans. J Exp Bot 66(11):3189–3199. https://doi.org/10.1093/jxb/erv128. (PMID: 10.1093/jxb/erv128258736654449539)
Heise A, Lippok B, Kirsch C, Hahlbrock K (2002) Two immediate-early pathogen-responsive members of the AtCMPG gene family in Arabidopsis thaliana and the W-box-containing elicitor-response element of AtCMPG1. Proc Natl Acad Sci USA 99(13):9049–9054. https://doi.org/10.1073/pnas.132277699. (PMID: 10.1073/pnas.13227769912084942124421)
Hotton SK, Callis J (2008) Regulation of cullin RING ligases. Annu Rev Plant Biol 59:467–489. https://doi.org/10.1146/annurev.arplant.58.032806.104011. (PMID: 10.1146/annurev.arplant.58.032806.10401118444905)
Hua Z, Vierstra RD (2011) The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol 62:299–334. https://doi.org/10.1146/annurev-arplant-042809-112256. (PMID: 10.1146/annurev-arplant-042809-11225621370976)
Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24(5):655–665. (PMID: 10.1046/j.1365-313x.2000.00913.x11123804)
Ichimura K, Casais C, Peck SC, Shinozaki K, Shirasu K (2006) MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. J Biol Chem 281(48):36969–36976. https://doi.org/10.1074/jbc.M605319200. (PMID: 10.1074/jbc.M60531920017023433)
Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329. https://doi.org/10.1038/nature05286. (PMID: 10.1038/nature0528617108957)
Kloek AP, Verbsky ML, Sharma SB, Schoelz JE, Vogel J, Klessig DF, Kunkel BN (2001) Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant J 26(5):509–522. https://doi.org/10.1046/j.1365-313x.2001.01050.x. (PMID: 10.1046/j.1365-313x.2001.01050.x11439137)
Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16(12):3496–3507. https://doi.org/10.1105/tpc.104.026765. (PMID: 10.1105/tpc.104.02676515548740535888)
Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96(20):11364–11369. https://doi.org/10.1073/pnas.96.20.11364. (PMID: 10.1073/pnas.96.20.113641050018218039)
Lu DP, Lin WW, Gao XQ, Wu SJ, Cheng C, Avila J, Heese A, Devarenne TP, He P, Shan LB (2011) Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science 332(6036):1439–1442. https://doi.org/10.1126/science.1204903. (PMID: 10.1126/science.1204903216808423243913)
Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL (2003) Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112(3):379–389. https://doi.org/10.1016/S0092-8674(03)00040-0. (PMID: 10.1016/S0092-8674(03)00040-012581527)
Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126(5):969–980. https://doi.org/10.1016/j.cell.2006.06.054. (PMID: 10.1016/j.cell.2006.06.05416959575)
Mersmann S, Bourdais G, Rietz S, Robatzek S (2010) Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiol 154(1):391–400. https://doi.org/10.1104/pp.110.154567. (PMID: 10.1104/pp.110.154567205920402938167)
Morales J, Kadota Y, Zipfel C, Molina A, Torres MA (2016) The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity. J Exp Bot 67(6):1663–1676. https://doi.org/10.1093/jxb/erv558. (PMID: 10.1093/jxb/erv55826798024)
Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, Jones JD (2004) The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135(2):1113–1128. https://doi.org/10.1104/pp.103.036749. (PMID: 10.1104/pp.103.03674915181213514144)
Ngou BPM, Ahn HK, Ding PT, Jones JDG (2021) Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592(7852):110. https://doi.org/10.1038/s41586-021-03315-7. (PMID: 10.1038/s41586-021-03315-733692545)
Ngou BPM, Ding PT, Jones JDG (2022) Thirty years of resistance: zig-zag through the plant immune system. Plant Cell 34(5):1447–1478. https://doi.org/10.1093/plcell/koac041. (PMID: 10.1093/plcell/koac041351676979048904)
Nishinaka Y, Aramaki Y, Yoshida H, Masuya H, Sugawara T, Ichimori Y (1993) A new sensitive chemiluminescence probe, L-012, for measuring the production of superoxide anion by cells. Biochem Biophys Res Commun 193(2):554–559. https://doi.org/10.1006/bbrc.1993.1659. (PMID: 10.1006/bbrc.1993.16598390246)
Patterson C (2002) A new gun in town: the U box is a ubiquitin ligase domain. Sci STKE 2002(116):pe4. https://doi.org/10.1126/stke.2002.116.pe4. (PMID: 10.1126/stke.2002.116.pe411805346)
Stegmann M, Anderson RG, Ichimura K, Pecenkova T, Reuter P, Zarsky V, McDowell JM, Shirasu K, Trujillo M (2012) The ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP-triggered responses in Arabidopsis. Plant Cell 24(11):4703–4716. https://doi.org/10.1105/tpc.112.104463. (PMID: 10.1105/tpc.112.104463231700363531861)
Trenner J, Monaghan J, Saeed B, Quint M, Shabek N, Trujillo M (2022) Evolution and functions of plant U-box proteins: from protein quality control to signaling. Annu Rev Plant Biol 73:93–121. https://doi.org/10.1146/annurev-arplant-102720-012310. (PMID: 10.1146/annurev-arplant-102720-01231035226816)
Trujillo M, Ichimura K, Casais C, Shirasu K (2008) Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr Biol 18(18):1396–1401. https://doi.org/10.1016/j.cub.2008.07.085. (PMID: 10.1016/j.cub.2008.07.08518771922)
Truman W, Sreekanta S, Lu Y, Bethke G, Tsuda K, Katagiri F, Glazebrook J (2013) The CALMODULIN-BINDING PROTEIN60 family includes both negative and positive regulators of plant immunity. Plant Physiol 163(4):1741–1751. https://doi.org/10.1104/pp.113.227108. (PMID: 10.1104/pp.113.227108241348853850189)
Underwood W, Melotto M, He SY (2007) Role of plant stomata in bacterial invasion. Cell Microbiol 9(7):1621–1629. https://doi.org/10.1111/j.1462-5822.2007.00938.x. (PMID: 10.1111/j.1462-5822.2007.00938.x17419713)
Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10(6):385–397. https://doi.org/10.1038/nrm2688. (PMID: 10.1038/nrm268819424292)
Voigt CA (2014) Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Front Plant Sci 5:168. https://doi.org/10.3389/fpls.2014.00168. (PMID: 10.3389/fpls.2014.00168248089034009422)
Wang J, Grubb LE, Wang J, Liang X, Li L, Gao C, Ma M, Feng F, Li M, Li L, Zhang X, Yu F, Xie Q, Chen S, Zipfel C, Monaghan J, Zhou JM (2018) A regulatory module controlling homeostasis of a plant immune kinase. Mol Cell 69(3):493–504 e6. https://doi.org/10.1016/j.molcel.2017.12.026. (PMID: 10.1016/j.molcel.2017.12.02629358080)
Wang W, Liu N, Gao C, Cai H, Romeis T, Tang D (2020) The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. New Phytol 227(2):529–544. https://doi.org/10.1111/nph.16515. (PMID: 10.1111/nph.1651532119118)
Xiang T, Zong N, Zou Y, Wu Y, Zhang J, Xing W, Li Y, Tang X, Zhu L, Chai J, Zhou JM (2008) Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18(1):74–80. https://doi.org/10.1016/j.cub.2007.12.020. (PMID: 10.1016/j.cub.2007.12.02018158241)
Yamada K, Saijo Y, Nakagami H, Takano Y (2016) Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science 354(6318):1427–1430. https://doi.org/10.1126/science.aah5692. (PMID: 10.1126/science.aah569227884939)
Yang CW, Gonzalez-Lamothe R, Ewan RA, Rowland O, Yoshioka H, Shenton M, Ye H, O’Donnell E, Jones JD, Sadanandom A (2006) The E3 ubiquitin ligase activity of Arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense. Plant Cell 18(4):1084–1098. https://doi.org/10.1105/tpc.105.039198. (PMID: 10.1105/tpc.105.039198165314961425844)
Yee D, Goring DR (2009) The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J Exp Bot 60(4):1109–1121. https://doi.org/10.1093/jxb/ern369. (PMID: 10.1093/jxb/ern36919196749)
Yu G, Derkacheva M, Rufian JS, Brillada C, Kowarschik K, Jiang S, Derbyshire P, Ma M, DeFalco TA, Morcillo RJL, Stransfeld L, Wei Y, Zhou JM, Menke FLH, Trujillo M, Zipfel C, Macho AP (2022) The Arabidopsis E3 ubiquitin ligase PUB4 regulates BIK1 and is targeted by a bacterial type-III effector. EMBO J 41(23):e107257. https://doi.org/10.15252/embj.2020107257. (PMID: 10.15252/embj.2020107257363147339713774)
Yuan MH, Jiang ZY, Bi GZ, Nomura K, Liu MH, Wang YP, Cai BY, Zhou JM, He SY, Xin XF (2021) Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592(7852):105. https://doi.org/10.1038/s41586-021-03316-6. (PMID: 10.1038/s41586-021-03316-6336925468016741)
Zhao Y, Thilmony R, Bender CL, Schaller A, He SY, Howe GA (2003) Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J 36(4):485–99. https://doi.org/10.1046/j.1365-313x.2003.01895.x. (PMID: 10.1046/j.1365-313x.2003.01895.x14617079)
Zheng MS, Takahashi H, Miyazaki A, Hamamoto H, Shah J, Yamaguchi I, Kusano T (2004) Up-regulation of Arabidopsis thaliana NHL10 in the hypersensitive response to Cucumber mosaic virus infection and in senescing leaves is controlled by signalling pathways that differ in salicylate involvement. Planta 218(5):740–750. https://doi.org/10.1007/s00425-003-1169-2. (PMID: 10.1007/s00425-003-1169-214666423)
Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428(6984):764–767. https://doi.org/10.1038/nature02485. (PMID: 10.1038/nature0248515085136)
معلومات مُعتمدة: NRF-2018K1A3A7A03089858 Ministry of Education of the Republic of Korea and National Research Foundation of Korea; 22H00364 KAKENHI
فهرسة مساهمة: Keywords: Arabidopsis; E3 ligase; PUB20; PUB21; Pattern-triggered immunity
المشرفين على المادة: 0 (Plant Proteins)
Z61I075U2W (Penicillin V)
EC 6.- (Ligases)
تواريخ الأحداث: Date Created: 20240124 Date Completed: 20240125 Latest Revision: 20240219
رمز التحديث: 20240219
DOI: 10.1007/s11103-023-01409-6
PMID: 38265485
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-5028
DOI:10.1007/s11103-023-01409-6