دورية أكاديمية

Interplay between ATRX and IDH1 mutations governs innate immune responses in diffuse gliomas.

التفاصيل البيبلوغرافية
العنوان: Interplay between ATRX and IDH1 mutations governs innate immune responses in diffuse gliomas.
المؤلفون: Hariharan S; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA., Whitfield BT; Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA., Pirozzi CJ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Department of Pathology, Duke University Medical Center, Durham, NC, USA., Waitkus MS; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA., Brown MC; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA., Bowie ML; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA., Irvin DM; Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA., Roso K; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Department of Pathology, Duke University Medical Center, Durham, NC, USA., Fuller R; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA., Hostettler J; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA., Dharmaiah S; Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA., Gibson EA; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA., Briley A; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA., Mangoli A; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA., Fraley C; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA., Shobande M; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA., Stevenson K; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA., Zhang G; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA., Malgulwar PB; Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA., Roberts H; Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA., Roskoski M; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA., Spasojevic I; PK/PD Core Laboratory, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.; Department of Medicine - Oncology, Duke University Medical Center, Durham, NC, USA., Keir ST; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA., He Y; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.; Department of Pathology, Duke University Medical Center, Durham, NC, USA., Castro MG; Department of Neurosurgery, University of Michigan Medical Center, Ann Arbor, MI, USA., Huse JT; Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA. jhuse@mdanderson.org., Ashley DM; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA. david.ashley@duke.edu.; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA. david.ashley@duke.edu.
المصدر: Nature communications [Nat Commun] 2024 Jan 25; Vol. 15 (1), pp. 730. Date of Electronic Publication: 2024 Jan 25.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Brain Neoplasms*/genetics , Brain Neoplasms*/metabolism , Glioma*/genetics , Glioma*/metabolism , Astrocytoma*/genetics, Humans ; X-linked Nuclear Protein/genetics ; Mutation ; Immunity, Innate/genetics ; Isocitrate Dehydrogenase/genetics ; Isocitrate Dehydrogenase/metabolism
مستخلص: Stimulating the innate immune system has been explored as a therapeutic option for the treatment of gliomas. Inactivating mutations in ATRX, defining molecular alterations in IDH-mutant astrocytomas, have been implicated in dysfunctional immune signaling. However, little is known about the interplay between ATRX loss and IDH mutation on innate immunity. To explore this, we generated ATRX-deficient glioma models in the presence and absence of the IDH1 R132H mutation. ATRX-deficient glioma cells are sensitive to dsRNA-based innate immune agonism and exhibit impaired lethality and increased T-cell infiltration in vivo. However, the presence of IDH1 R132H dampens baseline expression of key innate immune genes and cytokines in a manner restored by genetic and pharmacological IDH1 R132H inhibition. IDH1 R132H co-expression does not interfere with the ATRX deficiency-mediated sensitivity to dsRNA. Thus, ATRX loss primes cells for recognition of dsRNA, while IDH1 R132H reversibly masks this priming. This work reveals innate immunity as a therapeutic vulnerability of astrocytomas.
(© 2024. The Author(s).)
التعليقات: Update of: bioRxiv. 2023 Apr 21;:. (PMID: 37131619)
References: Ostrom, Q. T., Cioffi, G., Waite, K., Kruchko, C. & Barnholtz-Sloan, J. S. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro. Oncol. 23, iii1–iii105 (2021). (PMID: 34608945849127910.1093/neuonc/noab200)
Cancer Genome Atlas Research, N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008). (PMID: 10.1038/nature07385)
Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro. Oncol. 23, 1231–1251 (2021). (PMID: 34185076832801310.1093/neuonc/noab106)
Whitfield, B. T. & Huse, J. T. Classification of adult-type diffuse gliomas: impact of the World Health Organization 2021 update. Brain Pathol. 32, e13062 (2022). (PMID: 35289001924593610.1111/bpa.13062)
Weller, M. et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol. 18, 170–186 (2021). (PMID: 3329362910.1038/s41571-020-00447-z)
Mohile, N. A. et al. Therapy for diffuse astrocytic and oligodendroglial tumors in adults: ASCO-SNO guideline. J. Clin. Oncol. 40, 403–426 (2022). (PMID: 3489823810.1200/JCO.21.02036)
Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020). (PMID: 32433532723896010.1038/s41577-020-0306-5)
Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010). (PMID: 20525992354929710.1056/NEJMoa1003466)
Reardon, D. A. et al. Effect of Nivolumab vs Bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 6, 1003–1010 (2020). (PMID: 3243750710.1001/jamaoncol.2020.1024)
Lang, F. F. et al. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J. Clin. Oncol. 36, 1419–1427 (2018). (PMID: 29432077607585610.1200/JCO.2017.75.8219)
Desjardins, A. et al. Recurrent glioblastoma treated with recombinant poliovirus. N. Engl. J. Med. 379, 150–161 (2018). (PMID: 29943666606510210.1056/NEJMoa1716435)
Fudaba, H. & Wakimoto, H. Oncolytic virus therapy for malignant gliomas: entering the new era. Expert Opin. Biol. Ther. 23, 269–282 (2023). (PMID: 3680988310.1080/14712598.2023.2184256)
Brown, M. C. et al. Viral infection of cells within the tumor microenvironment mediates antitumor immunotherapy via selective TBK1-IRF3 signaling. Nat. Commun. 12, 1–16 (2021). (PMID: 10.1038/s41467-021-22088-1)
Kaufman, H. L., Kohlhapp, F. J. & Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug Discov. 14, 642–662 (2015). (PMID: 26323545709718010.1038/nrd4663)
Fitzgerald, K. A. et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003). (PMID: 1269254910.1038/ni921)
Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006). (PMID: 1662520210.1038/nature04734)
Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732–738 (2001). (PMID: 1160703210.1038/35099560)
Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009). (PMID: 19776740466415410.1038/nature08476)
Cancer Genome Atlas Research, N. et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N. Engl. J. Med. 372, 2481–2498 (2015). (PMID: 10.1056/NEJMoa1402121)
Haase, S. et al. Mutant ATRX: uncovering a new therapeutic target for glioma. Expert Opin. Ther. Targets 22, 599–613 (2018). (PMID: 29889582604441410.1080/14728222.2018.1487953)
Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770–775 (2018). (PMID: 29301958595351610.1126/science.aao1710)
Griffin, G. K. et al. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature 595, 309–314 (2021). (PMID: 33953401916616710.1038/s41586-021-03520-4)
Babikir, H. et al. ATRX regulates glial identity and the tumor microenvironment in IDH-mutant glioma. Genome Biol. 22, 311 (2021). (PMID: 34763709858861610.1186/s13059-021-02535-4)
Hu, C. et al. ATRX loss promotes immunosuppressive mechanisms in IDH1 mutant glioma. Neuro. Oncol. 24, 888–900 (2022). (PMID: 3495164710.1093/neuonc/noab292)
Amankulor, N. M. et al. Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes Dev. 31, 774–786 (2017). (PMID: 28465358543589010.1101/gad.294991.116)
Venteicher, A. S. et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science (New York, N.Y.) 355, eaai8478 (2017). (PMID: 2836026710.1126/science.aai8478)
Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539, 309–313 (2016). (PMID: 27806376546581910.1038/nature20123)
Hambardzumyan, D., Amankulor, N. M., Helmy, K. Y., Becher, O. J. & Holland, E. C. Modeling adult gliomas using RCAS/t-va technology. Transl. Oncol. 2, 89–95 (2009). (PMID: 19412424267057610.1593/tlo.09100)
Dyer, M. A., Qadeer, Z. A., Valle-Garcia, D. & Bernstein, E. ATRX and DAXX: mechanisms and mutations. Cold Spring Harb. Perspect Med. 7, a026567 (2017). (PMID: 28062559533424510.1101/cshperspect.a026567)
Kirby, A. J. & Finnerty, G. T. New strategies for managing adult gliomas. J. Neurol. 268, 3666–3674 (2021). (PMID: 3254252410.1007/s00415-020-09884-3)
Mukherjee, J. et al. Mutant IDH1 cooperates with ATRX loss to drive the alternative lengthening of telomere phenotype in glioma. Cancer Res. 78, 2966–2977 (2018). (PMID: 295453351057829610.1158/0008-5472.CAN-17-2269)
Kohanbash, G. et al. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J. Clin. Invest. 127, 1425–1437 (2017). (PMID: 28319047537385910.1172/JCI90644)
Pirozzi, C. J. & Yan, H. The implications of IDH mutations for cancer development and therapy. Nat. Rev. Clin. Oncol. 18, 645–661 (2021). (PMID: 3413131510.1038/s41571-021-00521-0)
Waitkus, M. S., Diplas, B. H. & Yan, H. Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell 34, 186–195 (2018). (PMID: 29805076609223810.1016/j.ccell.2018.04.011)
Golub, D. et al. Mutant isocitrate dehydrogenase inhibitors as targeted cancer therapeutics. Front Oncol. 9, 417 (2019). (PMID: 31165048653408210.3389/fonc.2019.00417)
Pusch, S. et al. Pan-mutant IDH1 inhibitor BAY 1436032 for effective treatment of IDH1 mutant astrocytoma in vivo. Acta Neuropathol. 133, 629–644 (2017). (PMID: 2812409710.1007/s00401-017-1677-y)
Wick, A. et al. Phase I assessment of safety and therapeutic activity of BAY1436032 in patients with IDH1-mutant solid tumors. Clin. Cancer Res. 27, 2723–2733 (2021). (PMID: 3362270410.1158/1078-0432.CCR-20-4256)
Lee, A. H. et al. Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the immunosuppressive tumor associated macrophages in recurrent glioblastoma. Nat. Commun. 12, 6938 (2021). (PMID: 34836966862655710.1038/s41467-021-26940-2)
Zhang, X. et al. IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression. Neuro. Oncol. 18, 1402–1412 (2016). (PMID: 27116977503552210.1093/neuonc/now061)
Chen, Y.-A. et al. Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS-STING DNA sensing pathway. Nat. Struct. Mol. Biol. 24, 1124–1131 (2017). (PMID: 2910641110.1038/nsmb.3498)
Wan, D., Jiang, W. & Hao, J. Research advances in how the cGAS-STING pathway controls the cellular inflammatory response. Front Immunol. 11, 615 (2020). (PMID: 32411126719875010.3389/fimmu.2020.00615)
Floyd, W. et al. Atrx deletion impairs CGAS/STING signaling and increases sarcoma response to radiation and oncolytic herpesvirus. J. Clin. Invest. 133, e149310 (2023). (PMID: 372000881031337410.1172/JCI149310)
Zheng, J. et al. RIG-I-like receptors: molecular mechanism of activation and signaling. Adv. Immunol. 158, 1–74 (2023). (PMID: 3745375310.1016/bs.ai.2023.03.001)
Sadic, D. et al. Atrx promotes heterochromatin formation at retrotransposons. EMBO Rep. 16, 836–850 (2015). (PMID: 26012739451512310.15252/embr.201439937)
Valenzuela, M., Amato, R., Sgura, A., Antoccia, A. & Berardinelli, F. The multiple facets of ATRX protein. Cancers (Basel) 13, 2211 (2021). (PMID: 3406295610.3390/cancers13092211)
Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsrna including endogenous retroviruses. Cell 162, 974–986 (2015). (PMID: 26317466455600310.1016/j.cell.2015.07.011)
Canadas, I. et al. Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat. Med. 24, 1143–1150 (2018). (PMID: 30038220608272210.1038/s41591-018-0116-5)
Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015). (PMID: 26317465484350210.1016/j.cell.2015.07.056)
Johnson, B. E. et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343, 189–193 (2014). (PMID: 2433657010.1126/science.1239947)
Ohba, S. et al. Mutant IDH1 expression drives TERT promoter reactivation as part of the cellular transformation process. Cancer Res. 76, 6680–6689 (2016). (PMID: 27758882529007210.1158/0008-5472.CAN-16-0696)
Szatmari, T. et al. Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci. 97, 546–553 (2006). (PMID: 1673473510.1111/j.1349-7006.2006.00208.x)
Wang, Y. et al. G-quadruplex DNA drives genomic instability and represents a targetable molecular abnormality in ATRX-deficient malignant glioma. Nat. Commun. 10, 1–14 (2019).
Struys, E. A., Jansen, E. E., Verhoeven, N. M. & Jakobs, C. Measurement of urinary D- and L-2-hydroxyglutarate enantiomers by stable-isotope-dilution liquid chromatography-tandem mass spectrometry after derivatization with diacetyl-L-tartaric anhydride. Clin. Chem. 50, 1391–1395 (2004). (PMID: 1516611010.1373/clinchem.2004.033399)
Pirozzi, C. J. et al. Mutant IDH1 disrupts the mouse subventricular zone and alters brain tumor progression. Mol. Cancer Res. 15, 507–520 (2017). (PMID: 28148827541542210.1158/1541-7786.MCR-16-0485)
Waitkus, M. S. et al. Adaptive evolution of the GDH2 allosteric domain promotes gliomagenesis by resolving IDH1(R132H)-induced metabolic liabilities. Cancer Res. 78, 36–50 (2018). (PMID: 2909760710.1158/0008-5472.CAN-17-1352)
معلومات مُعتمدة: R01 CA255788 United States CA NCI NIH HHS; R01 CA240338 United States CA NCI NIH HHS; TL1 TR003169 United States TR NCATS NIH HHS; UL1 TR003167 United States TR NCATS NIH HHS; P30 CA014236 United States CA NCI NIH HHS
المشرفين على المادة: EC 3.6.4.12 (X-linked Nuclear Protein)
EC 1.1.1.41 (Isocitrate Dehydrogenase)
EC 3.6.4.12 (ATRX protein, human)
EC 1.1.1.42. (IDH1 protein, human)
تواريخ الأحداث: Date Created: 20240125 Date Completed: 20240129 Latest Revision: 20240205
رمز التحديث: 20240205
مُعرف محوري في PubMed: PMC10810843
DOI: 10.1038/s41467-024-44932-w
PMID: 38272925
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-024-44932-w