دورية أكاديمية

Autotrophic biofilms sustained by deeply sourced groundwater host diverse bacteria implicated in sulfur and hydrogen metabolism.

التفاصيل البيبلوغرافية
العنوان: Autotrophic biofilms sustained by deeply sourced groundwater host diverse bacteria implicated in sulfur and hydrogen metabolism.
المؤلفون: Valentin-Alvarado LE; Graduate Group in Microbiology, University of California, Berkeley, CA, USA.; Innovative Genomics Institute, University of California, Berkeley, CA, USA., Fakra SC; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA., Probst AJ; Earth and Planetary Science, University of California, Berkeley, CA, USA.; Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry,, University of Duisburg-Essen, Essen, Essen, Germany., Giska JR; Earth and Planetary Science, University of California, Berkeley, CA, USA.; Cleaner Air Oregon Program, Oregon Department of Environmental Quality, Portland, USA., Jaffe AL; Graduate Group in Microbiology, University of California, Berkeley, CA, USA., Oltrogge LM; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.; Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA., West-Roberts J; Environmental Science, Policy and Management, University of California, Berkeley, CA, USA., Rowland J; Earth and Planetary Science, University of California, Berkeley, CA, USA.; Earth and Env. Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA., Manga M; Earth and Planetary Science, University of California, Berkeley, CA, USA.; University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany., Savage DF; Innovative Genomics Institute, University of California, Berkeley, CA, USA.; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.; Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA., Greening C; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia., Baker BJ; Department of Integrative Biology, University of Texas, Austin, USA.; Department of Marine Science, University of Texas, Austin, USA., Banfield JF; Innovative Genomics Institute, University of California, Berkeley, CA, USA. jbanfield@berkeley.edu.; Earth and Planetary Science, University of California, Berkeley, CA, USA. jbanfield@berkeley.edu.; Environmental Science, Policy and Management, University of California, Berkeley, CA, USA. jbanfield@berkeley.edu.; Department of Marine Science, University of Texas, Austin, USA. jbanfield@berkeley.edu.; Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. jbanfield@berkeley.edu.
المصدر: Microbiome [Microbiome] 2024 Jan 26; Vol. 12 (1), pp. 15. Date of Electronic Publication: 2024 Jan 26.
نوع المنشور: Video-Audio Media; Journal Article
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 101615147 Publication Model: Electronic Cited Medium: Internet ISSN: 2049-2618 (Electronic) Linking ISSN: 20492618 NLM ISO Abbreviation: Microbiome Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London: BioMed Central, 2013-
مواضيع طبية MeSH: Ecosystem* , Groundwater*/microbiology, Bacteria/genetics ; Bacteria/metabolism ; Sulfides/metabolism ; Oxidation-Reduction ; Sulfur/metabolism ; Biofilms ; Hydrogen/metabolism ; Phylogeny
مستخلص: Background: Biofilms in sulfide-rich springs present intricate microbial communities that play pivotal roles in biogeochemical cycling. We studied chemoautotrophically based biofilms that host diverse CPR bacteria and grow in sulfide-rich springs to investigate microbial controls on biogeochemical cycling.
Results: Sulfide springs biofilms were investigated using bulk geochemical analysis, genome-resolved metagenomics, and scanning transmission X-ray microscopy (STXM) at room temperature and 87 K. Chemolithotrophic sulfur-oxidizing bacteria, including Thiothrix and Beggiatoa, dominate the biofilms, which also contain CPR Gracilibacteria, Absconditabacteria, Saccharibacteria, Peregrinibacteria, Berkelbacteria, Microgenomates, and Parcubacteria. STXM imaging revealed ultra-small cells near the surfaces of filamentous bacteria that may be CPR bacterial episymbionts. STXM and NEXAFS spectroscopy at carbon K and sulfur L 2,3 edges show that filamentous bacteria contain protein-encapsulated spherical elemental sulfur granules, indicating that they are sulfur oxidizers, likely Thiothrix. Berkelbacteria and Moranbacteria in the same biofilm sample are predicted to have a novel electron bifurcating group 3b [NiFe]-hydrogenase, putatively a sulfhydrogenase, potentially linked to sulfur metabolism via redox cofactors. This complex could potentially contribute to symbioses, for example, with sulfur-oxidizing bacteria such as Thiothrix that is based on cryptic sulfur cycling. One Doudnabacteria genome encodes adjacent sulfur dioxygenase and rhodanese genes that may convert thiosulfate to sulfite. We find similar conserved genomic architecture associated with CPR bacteria from other sulfur-rich subsurface ecosystems.
Conclusions: Our combined metagenomic, geochemical, spectromicroscopic, and structural bioinformatics analyses of biofilms growing in sulfide-rich springs revealed consortia that contain CPR bacteria and sulfur-oxidizing Proteobacteria, including Thiothrix, and bacteria from a new family within Beggiatoales. We infer roles for CPR bacteria in sulfur and hydrogen cycling. Video Abstract.
(© 2024. The Author(s).)
References: Nat Biotechnol. 2018 Nov;36(10):996-1004. (PMID: 30148503)
Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1477-1482. (PMID: 15388698)
ISME J. 2020 Sep;14(9):2261-2274. (PMID: 32457501)
Bioinformatics. 2021 Aug 25;37(16):2473-2475. (PMID: 33459763)
J Biol Chem. 2017 Aug 25;292(34):14026-14038. (PMID: 28684420)
Microbiome. 2021 Feb 16;9(1):46. (PMID: 33593438)
FEMS Microbiol Ecol. 2004 Dec 27;51(1):31-53. (PMID: 16329854)
Appl Environ Microbiol. 2007 Nov;73(21):7013-22. (PMID: 17766448)
ISME J. 2015 Jun;9(6):1434-45. (PMID: 25489728)
PeerJ. 2019 Jul 26;7:e7359. (PMID: 31388474)
FEMS Microbiol Lett. 2016 Aug;363(16):. (PMID: 27324397)
Microbiology (Reading). 1995 Feb;141 ( Pt 2):449-58. (PMID: 7704275)
Environ Microbiol. 2000 Aug;2(4):389-98. (PMID: 11234927)
Nature. 2011 Oct 16;479(7372):249-52. (PMID: 22002606)
Science. 2012 Sep 28;337(6102):1661-5. (PMID: 23019650)
ISME J. 2022 Aug;16(8):2056-2059. (PMID: 35440729)
Microbiome. 2017 Sep 2;5(1):112. (PMID: 28865481)
Nat Microbiol. 2018 Jul;3(7):836-843. (PMID: 29807988)
Microbiome. 2022 Feb 16;10(1):33. (PMID: 35172890)
Mol Biol Evol. 2013 Apr;30(4):772-80. (PMID: 23329690)
Appl Environ Microbiol. 2004 Dec;70(12):7487-96. (PMID: 15574952)
Nat Commun. 2019 Jan 28;10(1):463. (PMID: 30692531)
Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):244-9. (PMID: 25535390)
Bioinformatics. 2016 Feb 15;32(4):605-7. (PMID: 26515820)
J Synchrotron Radiat. 2004 May 1;11(Pt 3):239-47. (PMID: 15103110)
Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5341-4. (PMID: 8389482)
Front Microbiol. 2012 Jan 09;2:276. (PMID: 22291687)
Science. 2002 Nov 29;298(5599):1788-90. (PMID: 12459589)
Adv Microb Physiol. 2009;54:103-200. (PMID: 18929068)
Science. 2007 Nov 30;318(5855):1449-52. (PMID: 17947550)
J Synchrotron Radiat. 2010 Sep;17(5):676-82. (PMID: 20724789)
Appl Environ Microbiol. 1985 Apr;49(4):887-98. (PMID: 4004221)
Appl Environ Microbiol. 2006 Aug;72(8):5596-609. (PMID: 16885314)
mBio. 2022 Apr 26;13(2):e0001622. (PMID: 35258328)
ISME J. 2016 Nov;10(11):2702-2714. (PMID: 27137126)
Science. 2007 Feb 16;315(5814):1003-6. (PMID: 17303759)
Proc Natl Acad Sci U S A. 2022 Jan 11;119(2):. (PMID: 34992141)
Elife. 2015 Mar 03;4:. (PMID: 25735037)
Nat Commun. 2015 Feb 27;6:6372. (PMID: 25721682)
Nature. 2021 Aug;596(7873):583-589. (PMID: 34265844)
Appl Environ Microbiol. 2005 Nov;71(11):7310-20. (PMID: 16269773)
Appl Environ Microbiol. 2001 Apr;67(4):1663-74. (PMID: 11282619)
Front Microbiol. 2017 May 08;8:791. (PMID: 28533768)
Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296. (PMID: 33885785)
Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11479-84. (PMID: 25049411)
Nat Rev Microbiol. 2018 Oct;16(10):629-645. (PMID: 30181663)
Nat Methods. 2023 Aug;20(8):1203-1212. (PMID: 37500759)
J Struct Biol. 2005 Dec;152(3):149-56. (PMID: 16198601)
Int J Syst Evol Microbiol. 2003 Sep;53(Pt 5):1271-1276. (PMID: 13130005)
Environ Sci Technol. 2018 Jan 16;52(2):503-512. (PMID: 26371540)
Nat Commun. 2016 Oct 24;7:13219. (PMID: 27774985)
Environ Microbiol. 2021 Jul;23(7):3710-3726. (PMID: 33350070)
Stand Genomic Sci. 2013 Apr 15;8(1):58-68. (PMID: 23961312)
Environ Microbiol. 2014 Nov;16(11):3443-62. (PMID: 24628880)
Appl Environ Microbiol. 1998 Jan;64(1):119-25. (PMID: 9435068)
Bioinformatics. 2012 Jun 1;28(11):1420-8. (PMID: 22495754)
Nat Methods. 2012 Mar 04;9(4):357-9. (PMID: 22388286)
Nat Biotechnol. 2019 Nov;37(11):1314-1321. (PMID: 31570900)
J Biomater Sci Polym Ed. 2002;13(8):919-37. (PMID: 12463511)
J Synchrotron Radiat. 2005 Jul;12(Pt 4):537-41. (PMID: 15968136)
J Dent Res. 2020 Jun;99(6):685-694. (PMID: 32075512)
Mol Biol Evol. 2015 Jan;32(1):268-74. (PMID: 25371430)
Curr Opin Microbiol. 2005 Jun;8(3):253-9. (PMID: 15939347)
Bioinformatics. 2009 Aug 1;25(15):1972-3. (PMID: 19505945)
Science. 1992 Nov 6;258(5084):972-5. (PMID: 1439809)
Nat Commun. 2021 Apr 28;12(1):2454. (PMID: 33911080)
Stand Genomic Sci. 2011 Dec 31;5(3):398-406. (PMID: 22675589)
J Phys Chem B. 2008 Nov 6;112(44):13711-6. (PMID: 18842017)
J Synchrotron Radiat. 2003 May 1;10(Pt 3):280-3. (PMID: 12714762)
Nat Microbiol. 2021 Mar;6(3):354-365. (PMID: 33495623)
BMC Biol. 2020 Jun 19;18(1):69. (PMID: 32560683)
Nat Microbiol. 2016 Apr 11;1:16048. (PMID: 27572647)
Nature. 2015 Jul 9;523(7559):208-11. (PMID: 26083755)
Sci Rep. 2016 Sep 27;6:34212. (PMID: 27670643)
ISME J. 2008 Jun;2(6):590-601. (PMID: 18356823)
mBio. 2022 Oct 26;13(5):e0171122. (PMID: 36043790)
Nat Biotechnol. 2021 May;39(5):555-560. (PMID: 33398153)
J Dent Res. 2019 May;98(5):500-509. (PMID: 30894042)
Environ Microbiome. 2021 Dec 14;16(1):24. (PMID: 34906246)
Front Microbiol. 2015 Jan 08;5:756. (PMID: 25620962)
Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):506-10. (PMID: 22203982)
J Phys Chem B. 2007 Jul 5;111(26):7691-9. (PMID: 17559260)
ISME J. 2018 Jun;12(7):1715-1728. (PMID: 29467397)
J Synchrotron Radiat. 2003 Mar 1;10(Pt 2):125-36. (PMID: 12606790)
Q Rev Biophys. 1995 Feb;28(1):33-130. (PMID: 7676009)
Nature. 2002 Jan 17;415(6869):312-5. (PMID: 11797006)
Appl Environ Microbiol. 1986 Aug;52(2):225-33. (PMID: 16347121)
ISME J. 2012 Jan;6(1):158-70. (PMID: 21716305)
Mol Biol Evol. 2013 May;30(5):1188-95. (PMID: 23418397)
معلومات مُعتمدة: 1R01GM12763 United States NH NIH HHS; 1R01GM12763 United States NH NIH HHS
فهرسة مساهمة: Keywords: Candidate phyla radiation; Groundwater microbiome; Synchrotron-based spectromicroscopy
المشرفين على المادة: 0 (Sulfides)
70FD1KFU70 (Sulfur)
7YNJ3PO35Z (Hydrogen)
تواريخ الأحداث: Date Created: 20240125 Date Completed: 20240129 Latest Revision: 20240129
رمز التحديث: 20240129
مُعرف محوري في PubMed: PMC10811913
DOI: 10.1186/s40168-023-01704-w
PMID: 38273328
قاعدة البيانات: MEDLINE
الوصف
تدمد:2049-2618
DOI:10.1186/s40168-023-01704-w