دورية أكاديمية

Cognition and Cognitive Reserve.

التفاصيل البيبلوغرافية
العنوان: Cognition and Cognitive Reserve.
المؤلفون: Savarimuthu A; Department of Humanities and Social Sciences, National Institute of Technology, Tiruchirappalli, India.; Department of English, PSG College of Arts and Science, Coimbatore, India., Ponniah RJ; Department of Humanities and Social Sciences, National Institute of Technology, Tiruchirappalli, India. joseph@nitt.edu.
المصدر: Integrative psychological & behavioral science [Integr Psychol Behav Sci] 2024 Jun; Vol. 58 (2), pp. 483-501. Date of Electronic Publication: 2024 Jan 27.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Science + Business Media Country of Publication: United States NLM ID: 101319534 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1936-3567 (Electronic) Linking ISSN: 19324502 NLM ISO Abbreviation: Integr Psychol Behav Sci Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York : Springer Science + Business Media
مواضيع طبية MeSH: Cognitive Reserve*/physiology , Cognition*/physiology, Humans ; Cognitive Dysfunction ; Cognitive Aging/physiology ; Reading ; Aging/psychology ; Aging/physiology ; Alzheimer Disease/psychology
مستخلص: Cognition is a mental process that provides the ability to think, know, and learn. Though cognitive skills are necessary to do daily tasks and activities, cognitive aging causes changes in various cognitive functions. Cognitive abilities that are preserved and strengthened by experience can be kept as a reserve and utilized when necessary. The concept of reserving cognition was found when people with Alzheimer's disease had differences in clinical manifestations and cognitive functions. The cognitive reserve builds resilience against cognitive decline and improves the quality of life. Also, several lines of studies have found that the plasticity between neurons has a significant impact on cognitive reserve and acts against cognitive decline. To extend the findings, the present study provides a comprehensive understanding of cognitive reserve and the variables that are involved in maintaining cognition. The study also considers reading as one of the cognitive proxies that develops and maintains cognitive reserve.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Addis, D. R., Leclerc, C. M., Muscatell, K. A., & Kensinger, E. A. (2010). There are age-related changes in neural connectivity during the encoding of positive, but not negative, information. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 46(4), 425–433. https://doi.org/10.1016/j.cortex.2009.04.011 . (PMID: 10.1016/j.cortex.2009.04.011)
Apple, D. M., Fonseca, R. S., & Kokovay, E. (2017). The role of adult neurogenesis in psychiatric and cognitive disorders. In Brain Research (Vol. 1655, pp. 270–276). Elsevier B.V. https://doi.org/10.1016/j.brainres.2016.01.023 .
Argiris, G., Stern, Y., & Habeck, C. (2023). Neural similarity across task load relates to cognitive reserve and brain maintenance measures on the Letter Sternberg task: A longitudinal study. Brain Imaging and Behavior, 17(1), 100–113. https://doi.org/10.1007/s11682-022-00746-2 . (PMID: 10.1007/s11682-022-00746-2)
Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502–509. https://doi.org/10.1016/j.tics.2013.08.012 . (PMID: 10.1016/j.tics.2013.08.012)
Bialystok, E. (2021). Bilingualism: Pathway to Cognitive Reserve. Trends in Cognitive sciences (Vol. 25, pp. 355–364). Elsevier Ltd. 5 https://doi.org/10.1016/j.tics.2021.02.003 .
Bonnechère, B., Klass, M., Langley, C., & Sahakian, B. J. (2021). Brain training using cognitive apps can improve cognitive performance and processing speed in older adults. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-91867-z .
Cattell, R. B. (1963). Theory of Fluid and Crystallized Intelligence: A critical experiment. Journal of Educational Psychology, 54(1), 1–22. https://doi.org/10.1037/h0046743 . (PMID: 10.1037/h0046743)
Cho, Y., Kim, D., & Jeong, S. (2021). Evidence-based reading interventions for English language learners: A multilevel meta-analysis. Heliyon, 7(9). https://doi.org/10.1016/j.heliyon.2021.e07985 .
Cochrane, A., Simmering, V., & Green, S. (2019). Fluid intelligence is related to capacity in memory as well as attention: Evidence from middle childhood and adulthood. Plos One, 14(8). https://doi.org/10.1371/journal.pone.0221353 .
de Oliveira, D. G., da Silva, P. B., Dias, N. M., Seabra, A. G., & Macedo, E. C. (2014). Reading component skills in dyslexia: Word recognition, comprehension and processing speed. Frontiers in Psychology, 5(NOV). https://doi.org/10.3389/fpsyg.2014.01339 .
Fan, G., Carlson, K. D., & Thomas, R. D. (2021). Individual Differences in Cognitive Constructs: A Comparison Between American and Chinese Culture Groups. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.614280 .
Fung, W., & Swanson, H. L. (2017). Working memory components that predict word problem solving: Is it merely a function of reading, calculation, and fluid intelligence ? 804–823. https://doi.org/10.3758/s13421-017-0697-0 .
Gordon, R., Smith-Spark, J. H., Newton, E. J., & Henry, L. A. (2021). Children’s verbal, visual and spatial Processing and Storage abilities: An analysis of Verbal Comprehension, Reading, counting and Mathematics. Frontiers in Psychology, 12, https://doi.org/10.3389/fpsyg.2021.732182 .
Harada, C. N., Love, N., M. C., & Triebel, K. L. (2013). Normal cognitive aging. In Clinics in Geriatric Medicine (Vol. 29, Issue 4, pp. 737–752). https://doi.org/10.1016/j.cger.2013.07.002 .
Hill, B. D., Foster, J. D., Elliott, E. M., Shelton, J. T., McCain, J., & Gouvier, W. D. (2013). Need for cognition is related to higher general intelligence, fluid intelligence, and crystallized intelligence, but not working memory. Journal of Research in Personality, 47(1), 22–25. https://doi.org/10.1016/j.jrp.2012.11.001 . (PMID: 10.1016/j.jrp.2012.11.001)
Hitch, G. J., Allen, R. J., & Baddeley, A. D. (2020). Attention and binding in visual working memory: Two forms of attention and two kinds of buffer storage. Attention Perception & Psychophysics, 82, 280–293. https://doi.org/10.3758/s13414-019-01837-x . (PMID: 10.3758/s13414-019-01837-x)
Holopainen, L., Hoang, N., Koch, A., & Kofler, D. (2020). Latent profile analysis of students’ reading development and the relation of cognitive variables to reading profiles. Annals of Dyslexia, 70(1), 94–114. https://doi.org/10.1007/s11881-020-00196-9 . (PMID: 10.1007/s11881-020-00196-97188696)
Ishikawa, T. (2023). Individual Differences and Skill Training in cognitive mapping: How and why people differ. Topics in Cognitive Science, 15(1), 163–186. https://doi.org/10.1111/tops.12605 . (PMID: 10.1111/tops.12605)
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. https://doi.org/10.1073/pnas.0801268105 .
Jakovljević, T., Janković, M. M., Savić, A. M., Soldatović, I., Čolić, G., Jakulin, T. J., Papa, G., & Ković, V. (2021). The relation between physiological parameters and colour modifications in text background and overlay during reading in children with and without dyslexia. Brain Sciences, 11(5). https://doi.org/10.3390/brainsci11050539 .
Jia, F., Li, Y., Li, M., & Cao, F. (2021). Subjective cognitive decline, Cognitive Reserve indicators, and the incidence of Dementia. Journal of the American Medical Directors Association, 22(7), 1449–1455e4. https://doi.org/10.1016/j.jamda.2020.08.005 . (PMID: 10.1016/j.jamda.2020.08.005)
Jones, S., Nyberg, L., Sandblom, J., Stigsdotter Neely, A., Ingvar, M., Petersson, M., K., & Bäckman, L. (2006). Cognitive and neural plasticity in aging: General and task-specific limitations. In Neuroscience and Biobehavioral Reviews (Vol. 30, Issue 6, pp. 864–871). https://doi.org/10.1016/j.neubiorev.2006.06.012 .
Katzman, R. (1993). Education and the prevalence of dementia and Alzheimer’s disease. In & Reviews NEUROLOGY, 43(1), 13–20. https://doi.org/10.1212/wnl.43.1_part_1.13 . (PMID: 10.1212/wnl.43.1_part_1.13)
Kraus, T. H., & Breznitz, Z. (2009). Can the error detection mechanism benefit from training the working memory? A comparison between dyslexics and controls - an ERP study. Plos One, 4(9). https://doi.org/10.1371/journal.pone.0007141 .
Kristanto, D., Liu, M., Liu, X., Sommer, W., & Zhou, C. (2020). Predicting reading ability from brain anatomy and function: From areas to connections. Neuroimage, 218, https://doi.org/10.1016/j.neuroimage.2020.116966 .
Kumar, A., Vikas, P., & Faiq (2019). Adult neurogenesis in humans: A review of Basic concepts, History, Current Research and Clinical implications. Innovations in Clinical Neuroscience, 16(5), 30–37. PMC6659986. (PMID: 6659986)
Lanfer, S. S. L., Enge, S., Melzer, M., Wegge, J., & Kliegel, M. (2022). Feasibility of a home-based task-switching training in middle-aged caregivers. Journal of Cognitive Enhancement: Towards the Integration of Theory and Practice, 6(3), 295–315. https://doi.org/10.1007/s41465-021-00237-0 .
Lee, J. J., McGue, M., Iacono, W. G., Michael, A. M., & Chabris, C. F. (2019). The causal influence of brain size on human intelligence: Evidence from within-family phenotypic associations and GWAS modeling. Intelligence, 75, 48–58. https://doi.org/10.1016/j.intell.2019.01.011 . (PMID: 10.1016/j.intell.2019.01.0117440690)
Lee, M. M., Drury, B. C., McGrath, L. M., & Stoodley, C. J. (2023). Shared grey matter correlates of reading and attention. Brain and Language, 237. https://doi.org/10.1016/j.bandl.2023.105230 .
Maharjan, R., Diaz Bustamante, L., Ghattas, K. N., Ilyas, S., Al-Refai, R., & Khan, S. (2020). Role of Lifestyle in Neuroplasticity and Neurogenesis in an aging brain. Cureus. https://doi.org/10.7759/cureus.10639 . (PMID: 10.7759/cureus.106397586385)
McKenzie, C., Bucks, R. S., Weinborn, M., Bourgeat, P., Salvado, O., & Gavett, B. E. (2020). Cognitive reserve predicts future executive function decline in older adults with Alzheimer’s disease pathology but not age-associated pathology. Neurobiology of Aging, 88, 119–127. https://doi.org/10.1016/j.neurobiolaging.2019.12.022 . (PMID: 10.1016/j.neurobiolaging.2019.12.022)
Medaglia, J. D., Pasqualetti, F., Hamilton, R. H., Thompson-Schill, S. L., & Bassett, D. S. (2017). Brain and cognitive reserve: Translation via network control theory. Neuroscience and Biobehavioral Reviews, 75, 53–64. https://doi.org/10.1016/j.neubiorev.2017.01.016 . (PMID: 10.1016/j.neubiorev.2017.01.0165359115)
Mičič, S., Horvat, M., & Bakracevic, K. (2019). The impact of Working Memory Training on cognitive abilities in older adults: The role of Cognitive Reserve. Current Aging Science, 13(1), 52–61. https://doi.org/10.2174/1874609812666190819125542 . (PMID: 10.2174/1874609812666190819125542)
Miotto, E. C., Balardin, J. B., da Graça, M., Martin, M., Polanczyk, G. V., Savage, C. R., Miguel, E. C., & Batistuzzo, M. C. (2020). Effects of semantic categorization strategy training on episodic memory in children and adolescents. Plos One, 15(2). https://doi.org/10.1371/journal.pone.0228866 .
Nguyen, L., Murphy, K., & Andrews, G. (2019). Cognitive and neural plasticity in old age: A systematic review of evidence from executive functions cognitive training. In Ageing Research Reviews (Vol. 53). Elsevier Ireland Ltd. https://doi.org/10.1016/j.arr.2019.100912 .
Nurliyana, A. R., Shariff, M., Mohd Taib, Z., Gan, M. N., W. Y., & Tan, K. A. (2020). Early growth and home environment are associated with cognitive development in the first year of life of Malaysian infants. Early Human Development, 140. https://doi.org/10.1016/j.earlhumdev.2019.104890 .
Park, D. C., & Bischof, G. N. (2013). The aging mind: Neuroplasticity in response to cognitive training. Dialogues in Clinical Neuroscience, 15(1), 109–119. https://doi.org/10.31887/dcns.2013.15.1/dpark . (PMID: 10.31887/dcns.2013.15.1/dpark3622463)
Plomin, R., & Deary, I. J. (2015). Genetics and intelligence differences: Five special findings. In Molecular Psychiatry (Vol. 20, Issue 1, pp. 98–108). Nature Publishing Group. https://doi.org/10.1038/mp.2014.105 .
Puente, A. N., Lindbergh, C. A., & Miller, L. S. (2015). The relationship between Cognitive Reserve and functional ability is mediated by executive functioning in older adults. Clinical Neuropsychologist, 29(1), 67–81. https://doi.org/10.1080/13854046.2015.1005676 . (PMID: 10.1080/13854046.2015.1005676)
Raefsky, S. M., & Mattson, M. P. (2017). Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radical Biology and Medicine (Vol. 102, pp. 203–216). Elsevier Inc. https://doi.org/10.1016/j.freeradbiomed.2016.11.045 .
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review (Vol. 24, pp. 355–370). Springer Science and Business Media, LLC. 3 https://doi.org/10.1007/s11065-014-9270-9 .
Rogers, L. J. (2021). Brain lateralization and cognitive capacity. Animals, 11(7). https://doi.org/10.3390/ani11071996 .
Rosenich, E., Hordacre, B., Paquet, C., Koblar, S. A., & Hillier, S. L. (2020). Cognitive Reserve as an emerging Concept in Stroke Recovery. Neurorehabilitation and neural repair (Vol. 34, pp. 187–199). SAGE Publications Inc. 3 https://doi.org/10.1177/1545968320907071 .
Satz, P. (1993). Brain Reserve Capacity on Symptom Onset After Brain Injury: A Formulation and Review of Evidence for Threshold Theory. In Neuropsychology (Vol. 7, Issue 3). https://doi.org/10.1037/0894-4105.7.3.273 .
Scarmeas, N., & Stern, Y. (2011). Cognitive reserve: Implications for diagnosis and prevention of Alzheimer´s Disease. Current Neurology Neuroscience, 4(5), 374–380. https://doi.org/10.1007/s11910-004-0084-7 . (PMID: 10.1007/s11910-004-0084-7)
Slattery, E. J., Ryan, P., Fortune, D. G., & McAvinue, L. P. (2021). Contributions of working memory and sustained attention to children’s reading achievement: A commonality analysis approach. Cognitive Development, 58. https://doi.org/10.1016/j.cogdev.2021.101028 .
Sörman, D. E., Ljungberg, J. K., & Rönnlund, M. (2018). Reading habits among older adults in relation to level and 15-year changes in verbal fluency and episodic recall. Frontiers in Psychology, 9(SEP). https://doi.org/10.3389/fpsyg.2018.01872 .
Sorrells, S. F., Paredes, M. F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K. W., James, D., Mayer, S., Chang, J., Auguste, K. I., Chang, E. F., Gutierrez, A. J., Kriegstein, A. R., Mathern, G. W., Oldham, M. C., Huang, E. J., Garcia-Verdugo, J. M., Yang, Z., & Alvarez-Buylla, A. (2018). Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature, 555(7696), 377–381. https://doi.org/10.1038/nature25975 . (PMID: 10.1038/nature259756179355)
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448–460. https://doi.org/10.1017/S1355617702813248 . (PMID: 10.1017/S1355617702813248)
Stern, Y. (2010). Cognitive Reserve and Aging. Imaging the Aging Brain, 8(4), 354–360. https://doi.org/10.1093/acprof:oso/9780195328875.003.0006 . (PMID: 10.1093/acprof:oso/9780195328875.003.0006)
Stern, Y., Arenaza-Urquijo, E. M., Bartrés-Faz, D., Belleville, S., Cantilon, M., Chetelat, G., Ewers, M., Franzmeier, N., Kempermann, G., Kremen, W. S., Okonkwo, O., Scarmeas, N., Soldan, A., Udeh-Momoh, C., Valenzuela, M., Vemuri, P., Vuoksimaa, E., Urquiljo, A., Bartrés-Faz, E. M., & Vuoksimaa, D., E (2018). Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer’s and Dementia, 1–7. https://doi.org/10.1016/j.jalz.2018.07.219 .
Stine-Morrow, E. A. L., McCall, G. S., Manavbasi, I., Ng, S., Llano, D. A., & Barbey, A. K. (2022). The Effects of Sustained Literacy Engagement on Cognition and Sentence Processing Among Older Adults. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.923795 .
Studer-Luethi, B., Boesch, V., Lusti, S., & Meier, B. (2022). Fostering cognitive performance in older adults with a process- and a strategy-based cognitive training. Aging, Neuropsychology, and Cognition. https://doi.org/10.1080/13825585.2022.2105298 . Routledge.
Sumowski, J. F., Rocca, M. A., Leavitt, V. M., Riccitelli, G., Comi, G., Deluca, J., & Filippi, M. (2013). Brain reserve and cognitive reserve in multiple sclerosis: What you’ve got and how you use it. Neurology, 80(24), 2186–2193. https://doi.org/10.1212/WNL.0b013e318296e98b . (PMID: 10.1212/WNL.0b013e318296e98b3721094)
Taran, N., Farah, R., DiFrancesco, M., Altaye, M., Vannest, J., Holland, S., Rosch, K., Schlaggar, B. L., & Horowitz-Kraus, T. (2022). The role of visual attention in dyslexia: Behavioral and neurobiological evidence. Human Brain Mapping, 43(5), 1720–1737. https://doi.org/10.1002/hbm.25753 . (PMID: 10.1002/hbm.257538886655)
Taylor, J. S. H., Rastle, K., Holloway, R., & Davis, M. H. (2013). Can cognitive models explain brain activation during Word and Pseudoword Reading? A Meta-analysis of 36 Neuroimaging studies. Psychological Bulletin, 139(4), 766–791. https://doi.org/10.1037/aOO3O266 . (PMID: 10.1037/aOO3O266)
Thow, M. E., Summers, M. J., Saunders, N. L., Summers, J. J., Ritchie, K., & Vickers, J. C. (2018). Further education improves cognitive reserve and triggers improvement in selective cognitive functions in older adults: The Tasmanian Healthy Brain Project. Alzheimer’s and Dementia: Diagnosis Assessment and Disease Monitoring, 10, 22–30. https://doi.org/10.1016/j.dadm.2017.08.004 . (PMID: 10.1016/j.dadm.2017.08.004)
Tucker, A. M., & Stern, Y. (2011). Cognitive Reserve in Aging. Current Alzheimer Research, 8(4), 354–360. https://doi.org/10.2174/156720511795745320 . (PMID: 10.2174/1567205117957453203135666)
Tucker-Drob, E. M., & Harden, K. P. (2012). Early childhood cognitive development and parental cognitive stimulation: Evidence for reciprocal gene-environment transactions. Developmental Science, 15(2), 250–259. https://doi.org/10.1111/j.1467-7687.2011.01121.x . (PMID: 10.1111/j.1467-7687.2011.01121.x)
Unsworth, N., Fukuda, K., Awh, E., & Vogel, E. K. (2014). Working memory and fluid intelligence: Capacity, attention control, and secondary memory retrieval. Cognitive Psychology, 71, 1–26. https://doi.org/10.1016/j.cogpsych.2014.01.003 . (PMID: 10.1016/j.cogpsych.2014.01.0034484859)
van der Kleij, S. W., Segers, E., Groen, M. A., & Verhoeven, L. (2019). Post-treatment reading development in children with dyslexia: The challenge remains. Annals of Dyslexia, 69(3), 279–296. https://doi.org/10.1007/s11881-019-00186-6 . (PMID: 10.1007/s11881-019-00186-6)
Van Loenhoud, A. C., Groot, C., Vogel, J. W., Van Der Flier, W. M., & Ossenkoppele, R. (2018). Is intracranial volume a suitable proxy for brain reserve? Rik Ossenkoppele. In Alzheimer’s Research and Therapy (Vol. 10, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13195-018-0408-5 .
Vance, D. E., & Crowe, M. (2006). A proposed model of neuroplasticity and cognitive reserve in older adults. Activities Adaptation and Aging, 30(3), 61–79. https://doi.org/10.1300/J016v30n03_04 . (PMID: 10.1300/J016v30n03_04)
Vance, D. E., Kaur, J., Fazeli, P. L., Talley, M. H., Yuen, H. K., Kitchin, B., & Lin, F. (2012). Neuroplasticity and successful cognitive aging: A brief overview for nursing. Journal of Neuroscience Nursing (Vol, 44(4), 218–227. https://doi.org/10.1097/JNN.0b013e3182527571 . (PMID: 10.1097/JNN.0b013e3182527571)
Vivar, C., Potter, M. C., & van Praag, H. (2012). All about running: Synaptic plasticity, growth factors and adult hippocampal neurogenesis. Current Topics in Behavioral Neurosciences, 15, 189–210. https://doi.org/10.1007/7854_2012_220 . (PMID: 10.1007/7854_2012_220)
Wang, Y., Wang, S., Zhu, W., Liang, N., Zhang, C., Pei, Y., Wang, Q., Li, S., & Shi, J. (2022). Reading activities compensate for low education-related cognitive deficits. Alzheimer’s Research and Therapy, 14(1). https://doi.org/10.1186/s13195-022-01098-1 .
فهرسة مساهمة: Keywords: Brain Reserve; Cognitive Development; Cognitive Reserve; Neuroplasticity; Reading
تواريخ الأحداث: Date Created: 20240126 Date Completed: 20240426 Latest Revision: 20240502
رمز التحديث: 20240503
DOI: 10.1007/s12124-024-09821-3
PMID: 38279076
قاعدة البيانات: MEDLINE
الوصف
تدمد:1936-3567
DOI:10.1007/s12124-024-09821-3