دورية أكاديمية

Disorders of vesicular trafficking presenting with recurrent acute liver failure: NBAS, RINT1, and SCYL1 deficiency.

التفاصيل البيبلوغرافية
العنوان: Disorders of vesicular trafficking presenting with recurrent acute liver failure: NBAS, RINT1, and SCYL1 deficiency.
المؤلفون: Peters B; Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany., Dattner T; Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany., Schlieben LD; School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.; Institute of Neurogenomics, Computational Health Centre, Helmholtz Zentrum München, Neuherberg, Germany., Sun T; Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany., Staufner C; Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany., Lenz D; Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany.
المصدر: Journal of inherited metabolic disease [J Inherit Metab Dis] 2024 Jan 27. Date of Electronic Publication: 2024 Jan 27.
Publication Model: Ahead of Print
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 7910918 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-2665 (Electronic) Linking ISSN: 01418955 NLM ISO Abbreviation: J Inherit Metab Dis Subsets: MEDLINE
أسماء مطبوعة: Publication: 2019- : [Hoboken, NJ] : Wiley
Original Publication: [Lancaster, Eng.] MTP Press.
مستخلص: Among genetic disorders of vesicular trafficking, there are three causing recurrent acute liver failure (RALF): NBAS, RINT1, and SCYL1-associated disease. These three disorders are characterized by liver crises triggered by febrile infections and account for a relevant proportion of RALF causes. While the frequency and severity of liver crises in NBAS and RINT1-associated disease decrease with age, patients with SCYL1 variants present with a progressive, cholestatic course. In all three diseases, there is a multisystemic, partially overlapping phenotype with variable expression, including liver, skeletal, and nervous systems, all organ systems with high secretory activity. There are no specific biomarkers for these diseases, and whole exome sequencing should be performed in patients with RALF of unknown etiology. NBAS, SCYL1, and RINT1 are involved in antegrade and retrograde vesicular trafficking. Pathomechanisms remain unclarified, but there is evidence of a decrease in concentration and stability of the protein primarily affected by the respective gene defect and its interaction partners, potentially causing impairment of vesicular transport. The impairment of protein secretion by compromised antegrade transport provides a possible explanation for different organ manifestations such as bone alteration due to lack of collagens or diabetes mellitus when insulin secretion is affected. Dysfunction of retrograde transport impairs membrane recycling and autophagy. The impairment of vesicular trafficking results in increased endoplasmic reticulum stress, which, in hepatocytes, can progress to hepatocytolysis. While there is no curative therapy, an early and consequent implementation of an emergency protocol seems crucial for optimal therapeutic management.
(© 2024 The Authors. Journal of Inherited Metabolic Disease published by John Wiley & Sons Ltd on behalf of SSIEM.)
References: Lenz D, Hørby Jørgensen M, Kelly D, et al. Etiology and outcome of adult and pediatric acute liver failure in Europe. J Pediatr Gastroenterol Nutr. 2023;77(1):115-120.
Kwong AJ, Ebel NH, Kim WR, et al. OPTN/SRTR 2020 annual data report: liver. Am J Transplant. 2022;22(Suppl 2):204-309.
Squires RH Jr, Shneider BL, Bucuvalas J, et al. Acute liver failure in children: the first 348 patients in the pediatric acute liver failure study group. J Pediatr. 2006;148(5):652-658.
Kathemann S, Bechmann LP, Sowa JP, et al. Etiology, outcome and prognostic factors of childhood acute liver failure in a German Single Center. Ann Hepatol. 2015;14(5):722-728.
Narkewicz MR, Dell Olio D, Karpen SJ, et al. Pattern of diagnostic evaluation for the causes of pediatric acute liver failure: an opportunity for quality improvement. J Pediatr. 2009;155(6):801-806.e1.
Kulkarni S, Perez C, Pichardo C, et al. Use of Pediatric Health Information System database to study the trends in the incidence, management, etiology, and outcomes due to pediatric acute liver failure in the United States from 2008 to 2013. Pediatr Transplant. 2015;19(8):888-895.
Narkewicz MR, Horslen S, Hardison RM, et al. A learning collaborative approach increases specificity of diagnosis of acute liver failure in pediatric patients. Clin Gastroenterol Hepatol. 2018;16(11):1801-1810.e3.
Lenz D, Schlieben LD, Shimura M, et al. Genetic landscape of pediatric acute liver failure of indeterminate origin. Hepatology. 2023. doi:10.1097/HEP.0000000000000684. Epub ahead of print.
Casey JP, McGettigan P, Lynam-Lennon N, et al. Identification of a mutation in LARS as a novel cause of infantile hepatopathy. Mol Genet Metab. 2012;106(3):351-358.
Cousin MA, Conboy E, Wang JS, et al. RINT1 Bi-allelic variations cause infantile-onset recurrent acute liver failure and skeletal abnormalities. Am J Hum Genet. 2019;105(1):108-121.
Haack TB, Staufner C, Köpke MG, et al. Biallelic mutations in NBAS cause recurrent acute liver failure with onset in infancy. Am J Hum Genet. 2015;97(1):163-169.
Lenz D, McClean P, Kansu A, et al. SCYL1 variants cause a syndrome with low γ-glutamyl-transferase cholestasis, acute liver failure, and neurodegeneration (CALFAN). Genet Med. 2018;20(10):1255-1265.
Gallagher RC, Lam C, Wong D, Cederbaum S, Sokol RJ. Significant hepatic involvement in patients with ornithine transcarbamylase deficiency. J Pediatr. 2014;164(4):720-725.e6.
Selvanathan A, Hertzog A, Lemberg DA, Ellaway C. Ornithine transcarbamylase deficiency presenting as acute liver failure in girls: a paediatric case series. J Pediatr Gastroenterol Nutr. 2020;71(2):208-210.
Martinelli D, Diodato D, Ponzi E, et al. The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. Orphanet J Rare Dis. 2015;10:29.
Mhanni AA, Chan A, Collison M, et al. Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome (HHH) presenting with acute fulminant hepatic failure. J Pediatr Gastroenterol Nutr. 2008;46(3):312-315.
Murali CN, Soler-Alfonso C, Loomes KM, et al. TRMU deficiency: a broad clinical spectrum responsive to cysteine supplementation. Mol Genet Metab. 2021;132(2):146-153.
Brassier A, Ottolenghi C, Boutron A, et al. Dihydrolipoamide dehydrogenase deficiency: a still overlooked cause of recurrent acute liver failure and Reye-like syndrome. Mol Genet Metab. 2013;109(1):28-32.
Casey JP, Slattery S, Cotter M, et al. Clinical and genetic characterisation of infantile liver failure syndrome type 1, due to recessive mutations in LARS. J Inherit Metab Dis. 2015;38(6):1085-1092.
Lenz D, Smith DEC, Crushell E, et al. Genotypic diversity and phenotypic spectrum of infantile liver failure syndrome type 1 due to variants in LARS1. Genet Med. 2020;22(11):1863-1873.
Kopajtich R, Murayama K, Janecke AR, et al. Biallelic IARS mutations cause growth retardation with prenatal onset, intellectual disability, muscular hypotonia, and infantile hepatopathy. Am J Hum Genet. 2016;99(2):414-422.
Orenstein N, Weiss K, Oprescu SN, et al. Bi-allelic IARS mutations in a child with intra-uterine growth retardation, neonatal cholestasis, and mild developmental delay. Clin Genet. 2017;91(6):913-917.
La Fay C, Hoebeke C, Juzaud M, et al. Deep phenotyping of MARS1 (interstitial lung and liver disease) and LARS1 (infantile liver failure syndrome 1) recessive multisystemic disease using human phenotype ontology annotation: overlap and differences. Case report and review of literature. Eur J Med Genet. 2021;64(11):104334.
Lenz D, Stahl M, Seidl E, et al. Rescue of respiratory failure in pulmonary alveolar proteinosis due to pathogenic MARS1 variants. Pediatr Pulmonol. 2020;55(11):3057-3066.
van Meel E, Wegner DJ, Cliften P, et al. Rare recessive loss-of-function methionyl-tRNA synthetase mutations presenting as a multi-organ phenotype. BMC Med Genet. 2013;14:106.
Durocher F, Faure R, Labrie Y, Pelletier L, Bouchard I, Laframboise R. A novel mutation in the EIF2AK3 gene with variable expressivity in two patients with Wolcott-Rallison syndrome. Clin Genet. 2006;70(1):34-38.
Wolcott CD, Rallison ML. Infancy-onset diabetes mellitus and multiple epiphyseal dysplasia. J Pediatr. 1972;80(2):292-297.
García-Cazorla A, Oyarzábal A, Saudubray JM, Martinelli D, Dionisi-Vici C. Genetic disorders of cellular trafficking. Trends Genet. 2022;38(7):724-751.
Yarwood R, Hellicar J, Woodman PG, Lowe M. Membrane trafficking in health and disease. Dis Model Mech. 2020;13(4):dmm043448.
Akesson LS, Rius R, Brown NJ, et al. Distinct diagnostic trajectories in NBAS-associated acute liver failure highlights the need for timely functional studies. JIMD Rep. 2022;63(3):240-249.
Chavany J, Cano A, Roquelaure B, et al. Mutations in NBAS and SCYL1, genetic causes of recurrent liver failure in children: three case reports and a literature review. Arch Pediatr. 2020;27(3):155-159.
Cheng Y, Xia Z, Huang C, Xu H. Case report: a novel cause of acute liver failure in children: a combination of human herpesvirus-6 infection and homozygous mutation in NBAS gene. J Clin Lab Anal. 2022;36(5):e24343.
Gu JL, Wang WJ, Li L, Zheng YJ, Mao XN. A novel compound heterozygous mutation in NBAS gene causes SOPH syndrome and liver function damage. Zhonghua Er Ke Za Zhi. 2019;57(6):487-489.
Jiang B, Xiao F, Li X, Xiao Y, Wang Y, Zhang T. Case report: pediatric recurrent acute liver failure caused by neuroblastoma amplified sequence (NBAS) gene mutations. Front Pediatr. 2020;8:607005.
Jiang T, Ouyang W, Tan Y, Tang L, Zhang H, Li S. Clinical features and genetic testing of a child with hepatic failure syndrome type 2. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2022;39(2):181-184.
Khoreva A, Pomerantseva E, Belova N, et al. Complex multisystem phenotype with immunodeficiency associated with NBAS mutations: reports of three patients and review of the literature. Front Pediatr. 2020;8:577.
Lacassie Y, Johnson B, Lay-Son G, et al. Severe SOPH syndrome due to a novel NBAS mutation in a 27-year-old woman-review of this pleiotropic, autosomal recessive disorder: mystery solved after two decades. Am J Med Genet A. 2020;182(7):1767-1775.
Lenz D, Pahl J, Hauck F, et al. NBAS variants are associated with quantitative and qualitative NK and B cell deficiency. J Clin Immunol. 2021;41(8):1781-1793.
Li ZD, Abuduxikuer K, Zhang J, et al. NBAS disease: 14 new patients, a recurrent mutation, and genotype-phenotype correlation among 24 Chinese patients. Hepatol Res. 2020;50(11):1306-1315.
Lipiński P, Greczan M, Piekutowska-Abramczuk D, et al. NBAS deficiency due to biallelic c.2809C>G variant presenting with recurrent acute liver failure with severe hyperammonemia, acquired microcephaly and progressive brain atrophy. Metab Brain Dis. 2021;36(7):2169-2172.
Nazmi F, Ozdogan E, Mungan NO, Arikan C. Liver involvement in neuroblastoma amplified sequence gene deficiency is not limited to acute injury: fibrosis silently continues. Liver Int. 2021;41(10):2433-2439.
Seo Y, Kim TY, Won D, et al. Genetic spectrum and characteristics of autosomal optic neuropathy in Korean: use of next-generation sequencing in suspected hereditary optic atrophy. Front Neurol. 2022;13:978532.
Staufner C, Peters B, Wagner M, et al. Defining clinical subgroups and genotype-phenotype correlations in NBAS-associated disease across 110 patients. Genet Med. 2020;22(3):610-621.
Suzuki S, Kokumai T, Furuya A, et al. A 34-year-old Japanese patient exhibiting NBAS deficiency with a novel mutation and extended phenotypic variation. Eur J Med Genet. 2020;63(11):104039.
Maksimova N, Hara K, Nikolaeva I, et al. Neuroblastoma amplified sequence gene is associated with a novel short stature syndrome characterised by optic nerve atrophy and Pelger-Huët anomaly. J Med Genet. 2010;47(8):538-548.
Aoki T, Ichimura S, Itoh A, et al. Identification of the neuroblastoma-amplified gene product as a component of the syntaxin 18 complex implicated in Golgi-to-endoplasmic reticulum retrograde transport. Mol Biol Cell. 2009;20(11):2639-2649.
Hatsuzawa K, Hirose H, Tani K, Yamamoto A, Scheller RH, Tagaya M. Syntaxin 18, a SNAP receptor that functions in the endoplasmic reticulum, intermediate compartment, and cis-Golgi vesicle trafficking. J Biol Chem. 2000;275(18):13713-13720.
Raote I, Ortega-Bellido M, Santos AJ, et al. TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes. Elife. 2018;7:7.
Saito K, Chen M, Bard F, et al. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell. 2009;136(5):891-902.
Ji J, Yang M, Jia J, et al. A novel variant in NBAS identified from an infant with fever-triggered recurrent acute liver failure disrupts the function of the gene. Hum Genome Var. 2023;10(1):13.
Anastasaki C, Longman D, Capper A, Patton EE, Cáceres JF. Dhx34 and Nbas function in the NMD pathway and are required for embryonic development in zebrafish. Nucleic Acids Res. 2011;39(9):3686-3694.
Longman D, Jackson-Jones KA, Maslon MM, et al. Identification of a localized nonsense-mediated decay pathway at the endoplasmic reticulum. Genes Dev. 2020;34(15-16):1075-1088.
Launay N, Ruiz M, Planas-Serra L, et al. RINT1 deficiency disrupts lipid metabolism and underlies a complex hereditary spastic paraplegia. J Clin Invest. 2023;133(14):e162836.
He S, Ni D, Ma B, et al. PtdIns(3)P-bound UVRAG coordinates Golgi-ER retrograde and Atg9 transport by differential interactions with the ER tether and the beclin 1 complex. Nat Cell Biol. 2013;15(10):1206-1219.
Schmidt WM, Rutledge SL, Schüle R, et al. Disruptive SCYL1 mutations underlie a syndrome characterized by recurrent episodes of liver failure, peripheral neuropathy, cerebellar atrophy, and ataxia. Am J Hum Genet. 2015;97(6):855-861.
Campos T, Leão Teles E, Rodrigues E, Nogueira C, Vilarinho L, Leão M. Two genetic disorders (TRMU and SCYL1) explaining transient infantile liver failure in one patient. Integ Mol Med. 2020;7(2):1-3.
Incecik F, Herguner OM, Willems P, Mungan NO. Spinocerebellar ataxia-21 in a Turkish child. Ann Indian Acad Neurol. 2018;21(1):68-70.
Isa HM, Alkaabi JF, Alhammadi WH, Marjan KA. Recurrent acute liver failure in a Bahraini child with a novel mutation of spinocerebellar ataxia-21. Cureus. 2023;15(3):e36249.
Li JQ, Gong JY, Knisely AS, Zhang MH, Wang JS. Recurrent acute liver failure associated with novel SCYL1 mutation: a case report. World J Clin Cases. 2019;7(4):494-499.
McNiven V, Gattini D, Siddiqui I, et al. SCYL1 disease and liver transplantation diagnosed by reanalysis of exome sequencing and deletion/duplication analysis of SCYL1. Am J Med Genet A. 2021;185(4):1091-1097.
Shohet A, Cohen L, Haguel D, et al. Variant in SCYL1 gene causes aberrant splicing in a family with cerebellar ataxia, recurrent episodes of liver failure, and growth retardation. Eur J Hum Genet. 2019;27(2):263-268.
Smith ED, Radtke K, Rossi M, et al. Classification of genes: standardized clinical validity assessment of gene-disease associations aids diagnostic exome analysis and reclassifications. Hum Mutat. 2017;38(5):600-608.
Spagnoli C, Frattini D, Salerno GG, Fusco C. On CALFAN syndrome: report of a patient with a novel variant in SCYL1 gene and recurrent respiratory failure. Genet Med. 2019;21(7):1663-1664.
Yigit S, Albayrak HM, Perk Yücel P, Usgu S, Yakut Y. The outcomes of an individualized physical therapy program in CALFAN syndrome: a case report. Pediatr Phys Ther. 2022;34(3):432-437.
Youssef M, Mascia KL, McGuire B, et al. CALFAN (low γ-glutamyl transpeptidase (GGT) cholestasis, acute liver failure, and neurodegeneration) syndrome: a case report with 3-year follow-up after liver transplantation in early adulthood. Case Reports Hepatol. 2023;2023:3010131.
Burman JL, Bourbonniere L, Philie J, et al. Scyl1, mutated in a recessive form of spinocerebellar neurodegeneration, regulates COPI-mediated retrograde traffic. J Biol Chem. 2008;283(33):22774-22786.
Chafe SC, Mangroo D. Scyl1 facilitates nuclear tRNA export in mammalian cells by acting at the nuclear pore complex. Mol Biol Cell. 2010;21(14):2483-2499.
Burman JL, Hamlin JN, McPherson PS. Scyl1 regulates Golgi morphology. PLoS One. 2010;5(3):e9537.
Ono S, Matsuda J, Watanabe E, et al. Novel neuroblastoma amplified sequence (NBAS) mutations in a Japanese boy with fever-triggered recurrent acute liver failure. Hum Genome Var. 2019;6:2.
Staufner C, Haack TB, Köpke MG, et al. Recurrent acute liver failure due to NBAS deficiency: phenotypic spectrum, disease mechanisms, and therapeutic concepts. J Inherit Metab Dis. 2016;39(1):3-16.
Lekszas C, Foresti O, Raote I, et al. Biallelic TANGO1 mutations cause a novel syndromal disease due to hampered cellular collagen secretion. Elife. 2020;9:9.
Fan J, Wang Y, Liu L, et al. cTAGE5 deletion in pancreatic β cells impairs proinsulin trafficking and insulin biogenesis in mice. J Cell Biol. 2017;216(12):4153-4164.
van der Vaart A, Griffith J, Reggiori F. Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Mol Biol Cell. 2010;21(13):2270-2284.
Cinque L, Forrester A, Bartolomeo R, et al. FGF signalling regulates bone growth through autophagy. Nature. 2015;528(7581):272-275.
Holling T, Bhavani GS, von Elsner L, et al. A homozygous hypomorphic BNIP1 variant causes an increase in autophagosomes and reduced autophagic flux and results in a spondylo-epiphyseal dysplasia. Hum Mutat. 2022;43(5):625-642.
González-Rodríguez A, Mayoral R, Agra N, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014;5(4):e1179.
Lin CW, Zhang H, Li M, et al. Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J Hepatol. 2013;58(5):993-999.
Grigaravicius P, Kaminska E, Hübner CA, McKinnon PJ, von Deimling A, Frappart PO. Rint1 inactivation triggers genomic instability, ER stress and autophagy inhibition in the brain. Cell Death Differ. 2016;23(3):454-468.
Senée V, Vattem KM, Delépine M, et al. Wolcott-Rallison syndrome: clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity. Diabetes. 2004;53(7):1876-1883.
Julier C, Nicolino M. Wolcott-Rallison syndrome. Orphanet J Rare Dis. 2010;5:29.
Balasubramanian M, Hurst J, Brown S, et al. Compound heterozygous variants in NBAS as a cause of atypical osteogenesis imperfecta. Bone. 2017;94:65-74.
Ferret PJ, Hammoud R, Tulliez M, et al. Detoxification of reactive oxygen species by a nonpeptidyl mimic of superoxide dismutase cures acetaminophen-induced acute liver failure in the mouse. Hepatology. 2001;33(5):1173-1180.
Chiew AL, Gluud C, Brok J, Buckley NA. Interventions for paracetamol (acetaminophen) overdose. Cochrane Database Syst Rev. 2018;2(2):Cd003328.
Sanabria-Cabrera J, Tabbai S, Niu H, et al. N-acetylcysteine for the management of non-acetaminophen drug-induced liver Injury in adults: a systematic review. Front Pharmacol. 2022;13:876868.
Vogel GF, Mozer-Glassberg Y, Landau YE, et al. Genotypic and phenotypic spectrum of infantile liver failure due to pathogenic TRMU variants. Genet Med. 2023;25(6):100828.
Squires RH, Dhawan A, Alonso E, et al. Intravenous N-acetylcysteine in pediatric patients with nonacetaminophen acute liver failure: a placebo-controlled clinical trial. Hepatology. 2013;57(4):1542-1549.
Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359:6372.
معلومات مُعتمدة: 01GM1906B Bundesministerium für Bildung und Forschung
فهرسة مساهمة: Keywords: CALFAN; ILFS2; ILFS3; NBAS; RINT1; SCYL1; disorders of vesicular trafficking; pediatric acute liver failure; recurrent acute liver failure
تواريخ الأحداث: Date Created: 20240127 Latest Revision: 20240127
رمز التحديث: 20240127
DOI: 10.1002/jimd.12707
PMID: 38279772
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2665
DOI:10.1002/jimd.12707