دورية أكاديمية

Effect of human umbilical cord blood-mesenchymal stem cells on cisplatin-induced nephrotoxicity in rats.

التفاصيل البيبلوغرافية
العنوان: Effect of human umbilical cord blood-mesenchymal stem cells on cisplatin-induced nephrotoxicity in rats.
المؤلفون: Hussein S; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt. samiahussein82@hotmail.com., Hasan MM; Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt., Saeed AA; Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt., Tolba AM; Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt., Sameh R; Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt., Abdelghany EMA; Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
المصدر: Molecular biology reports [Mol Biol Rep] 2024 Jan 28; Vol. 51 (1), pp. 234. Date of Electronic Publication: 2024 Jan 28.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Reidel Country of Publication: Netherlands NLM ID: 0403234 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-4978 (Electronic) Linking ISSN: 03014851 NLM ISO Abbreviation: Mol Biol Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Dordrecht, Boston, Reidel.
مواضيع طبية MeSH: Mesenchymal Stem Cells*/metabolism , Mesenchymal Stem Cell Transplantation*, Humans ; Rats ; Animals ; Cisplatin/adverse effects ; Cisplatin/metabolism ; Fetal Blood ; Stem Cells ; Oxidants/metabolism
مستخلص: Background: Cisplatin-containing regimen is an effective treatment for several malignancies. However, cisplatin is an important cause of nephrotoxicity. So, many trials were performed to transplant stem cells systemically or locally to control cisplatin-induced nephrotoxicity. Stem cell therapeutic effect may be dependent on the regulation of inflammation and oxidant stress.
Aim: To investigate the effect of human umbilical cord blood-mesenchymal stem cells (hUCB-MSCs) on the histological structure, the oxidant stress, and the inflammatory gene expression in an experimental model of cisplatin-induced nephrotoxicity in rats.
Method: The rats were divided into 6 equal groups (each of 10 rats): Group I included normal rats that received no treatment. Group II included healthy rats that received IV hUCB-MSCs. Group III included untreated cisplatin-induced nephrotoxic rats. Group IV included cisplatin-induced nephrotoxic rats that received magnesium (Mg) injections after injury. Group V was injected with hUCB-MSCs after injury. Group VI received both Mg and hUCB-MSCs after injury. In tissue homogenates, reduced glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) activities were measured. Quantitative real-time-polymerase chain reaction (qRT-PCR) was performed to assess iNOS, TLR4, and NF-kB gene expression. Hematoxylin and eosin (H&E) staining was performed to study the histological structure of the kidney. Immunohistochemical staining of iNOS and NF-κB was performed, as well.
Results: Disturbed kidney functions, oxidative status, and histological structure were seen in the rats that received cisplatin. Treated groups showed improvements in kidney functions, oxidative status, and histological structure, particularly in the combined treatment group.
Conclusion: In the cisplatin-induced nephrotoxicity model, hUCB-MSCs could improve the functional and morphological kidney structure by modulation of oxidative and inflammatory status.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Tucker BM, Perazella MA (2018) Medications. In: Lerma EV, Sparks MA, Topf J (eds) Nephrology Secrets, 4th edn. Elsevier, Philadelphia, pp 78–83.
Crona DJ, Faso A, Nishijima TF, McGraw KA, Galsky MD, Milowsky MI (2017) A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist 22(5):609–619. (PMID: 28438887542351810.1634/theoncologist.2016-0319)
Park MS, De Leon M, Devarajan P (2002) Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol 13:858–865. (PMID: 1191224410.1681/ASN.V134858)
Wang W, Wang W, Jiang Y, Li Z, Cheng J, Liu N, Han G, Lu S, Zhang J (2014) Human adipose-derived stem cells modified by HIF-1α accelerate the recovery of cisplatin-induced acute renal injury in vitro. Biotech Lett 36:667–676. (PMID: 10.1007/s10529-013-1389-x)
Ozkok A, Edelstein CL (2014) Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int 2014:967826. (PMID: 25165721414011210.1155/2014/967826)
Lajer H, Kristensen M, Hansen HH et al (2005) Magnesium depletion enhances cisplatin-induced nephrotoxicity. Cancer Chemother Pharmacol 56:535–542. (PMID: 1594793110.1007/s00280-005-1010-7)
Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007. (PMID: 1827296210.1038/sj.ki.5002786)
Muraki K, Koyama R, Honma Y, Yagishita S, Shukuya T, Ohashi R et al (2012) Hydration with magnesium and mannitol without furosemide prevents the nephrotoxicity induced by cisplatin and pemetrexed in patients with advanced non-small cell lung cancer. J Thorac Dis 4(6):562–568. (PMID: 232052793506787)
Oka T, Kimura T, Suzumura T, Yoshimoto N, Nakai T, Yamamoto N et al (2014) Magnesium supplementation and high-volume hydration reduce the renal toxicity caused by cisplatin-based chemotherapy in patients with lung cancer: a toxicity study. BMC Pharmacol Toxicol 15:70. (PMID: 25472655427280410.1186/2050-6511-15-70)
Yamamoto Y, Watanabe K, Tsukiyama I, Matsushita H, Yabushita H, Matsuura K et al (2015) Nephroprotective effects of hydration with magnesium in patients with cervical cancer receiving cisplatin. Anticancer Res 35(4):2199–2204. (PMID: 25862878)
Li Y, Hu G, Cheng Q (2015) Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges. Front Med 9:20–29. (PMID: 2549176910.1007/s11684-014-0371-x)
Kusaba T, Lalli M, Kramann R, Kobayashi A, Humphreys BD (2014) Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci USA 111:1527–1532. (PMID: 2412758310.1073/pnas.1310653110)
Chung BH, Lim SW, Doh KC, Piao SG, Heo SB, Yang CW (2013) Human adipose tissue derived mesenchymal stem cells aggravate chronic cyclosporin nephrotoxicity by the induction of oxidative stress. PloS one 8:e59693. (PMID: 23555748360855910.1371/journal.pone.0059693)
Lin M, Yiu WH, Wu HJ, Chan LY, Leung JC, Au WS et al (2012) Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J Am Soc Nephrol 23(1):86–102. (PMID: 2202170610.1681/ASN.2010111210)
Ma J, Chadban SJ, Zhao CY, Chen X, Kwan T, Panchapakesan U et al (2014) TLR4 activation promotes podocyte injury and interstitial fibrosis in diabetic nephropathy. PloS one 9:e97985. (PMID: 24842252402648410.1371/journal.pone.0097985)
Mudaliar H, Pollock C, Panchapakesan U (2014) Role of Toll-like receptors in diabetic nephropathy. Clini Sci (Lond) 126:685–694. (PMID: 10.1042/CS20130267)
Kaur H, Chien A, Jialal I (2012) Hyperglycemia induces Toll like receptor 4 expression and activity in mouse mesangial cells: relevance to diabetic nephropathy. Am J Physiol Renal Physiol 303(8):F1145–F1150. (PMID: 22874765346967910.1152/ajprenal.00319.2012)
Ha H, Hwang IA, Park JH, Lee HB (2008) Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diabetes Res Clin Pract 82(1 Suppl):S42–S45. (PMID: 1884535210.1016/j.diabres.2008.09.017)
Makuc J, Petrovic D (2011) A review of oxidative stress related genes and new antioxidant therapy in diabetic nephropathy. Cardiovasc Hematol Agents Med Chem 9:253–261. (PMID: 2190265710.2174/187152511798120949)
Wagener FA, Dekker D, Berden JH, Scharstuhl A, van der Vlag J (2009) The role of reactive oxygen species in apoptosis of the diabetic kidney. Apoptosis 14:1451–1458. (PMID: 19466552277311510.1007/s10495-009-0359-1)
Yao W, Hu Q, Ma Y, Xiong W, Wu T, Cao J, Wu D (2015) Human adipose-derived mesenchymal stem cells repair cisplatin-induced acute kidney injury through antiapoptotic pathways. Exp Ther Med 10(2):468–476. (PMID: 26622339450936410.3892/etm.2015.2505)
Domanska-Janik K, Buzanska L, Lukomska B (2008) A novel, neural potential of non-hematopoietic human umbilical cord blood stem cells. Int J Dev Biol 52:237–248. (PMID: 1831171410.1387/ijdb.072315kd)
Garnier D, Magnus N, Lee TH, Bentley V, Meehan B, Milsom C et al (2012) Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor. J Biol Chem 287:43565–43572. (PMID: 23118232352794310.1074/jbc.M112.401760)
Bagheri F, Amri J, Salehi M, Karami H, Alimoradian A, Latifi S (2020) Effect of Artemisia absinthium ethanolic extract on oxidative stress markers and the TLR4, S100A4, Bax and Bcl-2 genes expression in the kidney of STZ-induced diabetic rats. Horm Mol Biol Clin Invest 41(4):20200028.
Habibi F, Ghadiri Soufi F, Ghiasi R, Khamaneh AM, Alipour MR (2016) Alteration in inflammation-related miR-146a expression in NF-KB Signaling pathway in diabetic rat hippocampus. Adv Pharm Bull 6(1):99–103. https://doi.org/10.15171/apb.2016.015. (PMID: 10.15171/apb.2016.015271234244845552)
Long JP, Tong HH, Shannon PA, DeMaria TF (2003) Differential expression of cytokine genes and inducible nitric oxide synthase induced by opacity phenotype variants of Streptococcus pneumoniae during acute otitis media in the rat. Infect Immun 71(10):5531–5540. (PMID: 1450047120108110.1128/IAI.71.10.5531-5540.2003)
Park SH, Hong JY, Kim WK et al (2019) Effects of SHINBARO2 on Rat models of lumbar spinal stenosis. Mediators Inflamm 2019:7651470. (PMID: 31182933651206010.1155/2019/7651470)
Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010) Mechanisms of cisplatin nephrotoxicity. Toxins (Basel) 2:2490–2518. (PMID: 2206956310.3390/toxins2112490)
Sanchez-Gonzalez PD, Lopez-Hernandez FJ, Lopez-Novoa JM, Morales AI (2011) An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit Rev Toxicol 41:803–821. (PMID: 2183855110.3109/10408444.2011.602662)
Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, Zhang B, Wang M, Mao F, Yan Y, Gao S, Gu H, Zhu W, Qian H (2013) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4(2):34. (PMID: 23618405370703510.1186/scrt194)
Solanki MH, Chatterjee PK, Gupta M, Xue X, Plagov A, Metz MH, Mintz R, Singhal PC, Metz CN (2014) Magnesium protects against cisplatin induced acute kidney injury by regulating platinum accumulation. Am J Physiol Renal Physiol 307:F369–F384. (PMID: 24944268719922710.1152/ajprenal.00127.2014)
Elhusseini FM, Saad MA, Anber N, Elghannam D, Sobh MA, Alsayed A, El-Dusoky S, Sheashaa H, Abdel-Ghaffar H, Sobh M (2016) Long term study of protective mechanisms of human adipose derived mesenchymal stem cells on cisplatin induced kidney injury in sprague-dawley rats. J Stem Cells Regen Med 12(1):36–48. https://doi.org/10.46582/jsrm.1201006.PMID:27398000;PMCID:PMC4929892. (PMID: 10.46582/jsrm.1201006.PMID:27398000;PMCID:PMC4929892273980004929892)
Sun Z, Xu S, Cai Q, Zhou W, Jiao X, Bao M, Yu X (2020) Wnt/β-catenin agonist BIO alleviates cisplatin-induced nephrotoxicity without compromising its efficacy of anti-proliferation in ovarian cancer. Life Sci 15(263):118672. (PMID: 10.1016/j.lfs.2020.118672)
Adamson PC, Blaney SM, Bagatell R, Skolnik JM, Balis FM (2016) General principles of chemotherapy. In: Pizzo PA, Poplack DG (eds) Principles and practice of pediatric oncology, 7th edn. Wolters Kluwer, Philadelphia, pp 239–315.
Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–78. (PMID: 25058905414668410.1016/j.ejphar.2014.07.025)
Redza-Dutordoir M, Averill-Bates AD (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica 1863:2977–2992. (PMID: 10.1016/j.bbamcr.2016.09.012)
Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M, Garcia-Perez J (2011) Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 7(6):327–340. (PMID: 2153734910.1038/nrneph.2011.51)
Faure E, Equils O, Sieling PA, Thomas L, Zhang FX, Kirschning CJ et al (2000) Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem 275(15):11058–11063. (PMID: 1075390910.1074/jbc.275.15.11058)
Jiang Q, Yi M, Guo Q et al (2015) Protective effects of polydatin on lipopolysaccharide-induced acute lung injury through TLR4- MyD88-NF-kappaB pathway. Int Immunopharmacol 29(2):370–376. (PMID: 2650716510.1016/j.intimp.2015.10.027)
Devaraj S, Tobias P, Kasinath BS et al (2011) Knockout of toll-like receptor-2 attenuates both the proinflammatory state of diabetes and incipient diabetic nephropathy. Arterioscler Thromb Vasc Biol 31(8):1796–1804. (PMID: 21617141314878610.1161/ATVBAHA.111.228924)
Humphreys BD, Bonventre JV (2008) Mesenchymal stem cells in acute kidney injury. Annu Rev Med 59:311–325. (PMID: 1791492610.1146/annurev.med.59.061506.154239)
Kim JH, Park DJ, Yun JC et al (2012) Human adipose tissue-derived mesenchymal stem cells protect kidneys from cisplatin nephrotoxicity in rats. Am J Physiol Renal Physiol 302:F1141–F1150. (PMID: 2220523110.1152/ajprenal.00060.2011)
Morigi M, Introna M, Imberti B et al (2008) Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells 26:2075–2082. (PMID: 1849989510.1634/stemcells.2007-0795)
Morigi M, Rota C, Montemurro T et al (2010) Life-sparing effect of human cord blood-mesenchymal stem cells in experimental acute kidney injury. Stem Cells 28:513–522. (PMID: 2004990110.1002/stem.293)
Cho H, Jang HN, Jung MH, Jang SJ, Jeong S, Lee T, Bae E, Chang S, Park DJ, Kim J (2020) The protective effect of human adipose derived mesenchymal stem cells on cisplatin-induced nephrotoxicity is dependent on their level of expression of heme oxygenase-1. Eur J Inflamm 18:205873922093456. (PMID: 10.1177/2058739220934563)
Shih YC, Lee PY, Cheng H, Tsai CH, Ma H, Tarng DC (2013) Adipose-derived stem cells exhibit antioxidative and antiapoptotic properties to rescue ischemic acute kidney injury in rats. Plast Reconstr Surg 132:940e–951e. (PMID: 2428164110.1097/PRS.0b013e3182a806ce)
Manohar S, Leung N (2018) Cisplatin nephrotoxicity: a review of the literature. J Nephrol 31(1):15–25. (PMID: 2838250710.1007/s40620-017-0392-z)
Liu H, Baliga R (2005) Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol 16(7):1985–1992. (PMID: 1590176810.1681/ASN.2004090768)
Perse M, Veceric-Haler Z (2018) Cisplatin-Induced rodent model of kidney injury: characteristics and challenges. Biomed Res Int 2018:1462802. (PMID: 30276200615712210.1155/2018/1462802)
Ramesh G, Zhang B, Uematsu S, Akira S, Reeves WB (2007) Endotoxin and cisplatin synergistically induce renal dysfunction and cytokine production in mice. Am J Physiol Renal Physiol 293(1):F325–F332. (PMID: 1749409210.1152/ajprenal.00158.2007)
Mukhopadhyay P, Horváth B, Kechrid M, Tanchian G, Rajesh M, Naura AS et al (2011) Poly (ADP-ribose) polymerase-1 is a key mediator of cisplatin-induced kidney inflammation and injury. Free Radic Biol Med 51(9):1774–1788. (PMID: 21884784320727810.1016/j.freeradbiomed.2011.08.006)
فهرسة مساهمة: Keywords: Cisplatin; Human umbilical cord blood-mesenchymal stem cells; Mg; Nephrotoxicity; qRT- PCR
المشرفين على المادة: Q20Q21Q62J (Cisplatin)
0 (Oxidants)
تواريخ الأحداث: Date Created: 20240128 Date Completed: 20240130 Latest Revision: 20240130
رمز التحديث: 20240130
DOI: 10.1007/s11033-023-08958-5
PMID: 38282086
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-4978
DOI:10.1007/s11033-023-08958-5